| 研究生: |
劉宏智 Liu, Hong-Zhi |
|---|---|
| 論文名稱: |
微波功率放大器積體電路及其應用於發射機系統之研究 Study of Microwave Power Amplifier Integrated Circuits for Transmitter System Applications |
| 指導教授: |
王永和
Wang, Yeong-Her |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 126 |
| 中文關鍵詞: | 假形高速電子移動電晶體 、微波積體電路 、單晶微波積體電路 、發射機 、升頻器 、功率放大器 |
| 外文關鍵詞: | power amplifier, PHEMT, up-converter, MMIC, transmitter, MIC |
| 相關次數: | 點閱:103 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
功率放大器是微波發射機系統中之主要關鍵性零組件。本研究中利用砷化鋁鎵/砷化銦鎵/砷化鎵假形高速電子移動電晶體(PHEMT)技術,進行設計並製作適應用於L頻段、S頻段、Ku頻段及Ka頻段之微波功率放大器電路。依電路製作之形式,微波功率放大器可區分為微波積體電路(MIC)及單晶微波積體電路(MMIC),其電路設計之程序及阻抗匹配電路之架構將在論文中詳細說明。
首先以微波積體電路形式進行L頻段與S頻段功率放大器之設計製作。利用已部份匹配之50-mm砷化鋁鎵/砷化銦鎵/砷化鎵假形高速電子移動電晶體並結合外部匹配電路,論文中將提出一製作簡易而低成本之輸出級功率放大器,其操作頻率為1.9 GHz且輸出功率可達25瓦特。將此輸出級功率放大器整合於驅動級放大器與電源控制電路,進而分別設計開發出適用於PHS系統500毫瓦特與1瓦特基地台之20瓦特與40瓦特低失真功率放大器次系統。針對S頻段之系統應用,本論文將提出以FR-4材質印刷電路板為基板所設計製作之低成本功率放大器,其輸出功率可達38-dBm。
接著以單晶微波積體電路形式進行Ku頻段與Ka頻段功率放大器之設計。論文中將提出結合特殊設計之源極電容與源極電阻所開發之1.8-mm自偏壓假形高速電子移動電晶體,並利用此自偏壓元件進一步設計製作操作於Ku頻段且輸出功率可達1瓦特之單電源二級式功率放大器單晶微波積體電路。為了驗證所開發之自偏壓元件其特性是否適用於Ku頻段,故同時製作一具相同匹配電路之雙偏壓功率放大器單晶微波積體電路,並探討比較兩者之差異。除了Ku頻段之電路外,本論文亦針對Ka頻段利用假形高速電子移動電晶體設計製作了三級式功率放大器單晶微波積體電路,此晶片具適當面積11.9 mm2且輸出功率可達3.5瓦特,相當適合Ka頻段軍事及商業發射機系統之應用。
為了說明功率放大器在微波發射機系統之應用,本論文中利用自行研製之功率放大器單晶微波積體電路,進一步設計開發可達1瓦特輸出功率之小型化Ka頻段升頻器。考量發射機系統之實用性,除了基本性能之設計與量測外,亦針對環境溫度變化造成升頻器性能之影響加以探討,最後藉由所提出之溫度補償電路對升頻器之特性進行改善。
The power amplifier is the key component in the microwave transmitter systems. In this dissertation, the microwave power amplifiers covering the frequency range of L-band, S-band, Ku-band and Ka-band by using AlGaAs/InGaAs/GaAs pseudomorphic high electron mobility transistors (PHEMTs) technology will be designed and demonstrated. The general design procedure of microwave power amplifiers for microwave integrated circuit (MIC) and monolithic microwave integrated circuit (MMIC) techniques and the topology of impedance matching circuit are described.
With the MIC approach, a simple and low cost 1.9 GHz 25-W output stage power amplifier using a 50-mm pre-matched PHEMT device with external matching circuits will be proposed. By integrating the output stage power amplifier with other driver stages and DC control circuits, the 20-W and 40-W low distortion power amplifier sub-systems will be constructed for applications on the PHS 500-mW and 1-W base stations, respectively. Besides, the design and fabrication of a low cost 38-dBm power amplifier fabricated on FR-4 PCB will be presented for S-band applications.
With the MMIC approach, the design concept of a 1.8-mm self-bias PHEMT device with compact source capacitors and resistors will be proposed. Based on the proposed self-bias PHEMT, a single-supply Ku-band 1-W two-stage power amplifier MMIC will be also demonstrated. To verify the performance of the proposed self-bias PHEMT, the comparisons of the self-bias and dual-bias MMICs with the same matching networks are discussed. In addition to the Ku-band MMIC, the design and fabrication of a fully matched Ka-band 3.5-W three-stage PHEMT power amplifier MMIC with a compact chip area of 11.9 mm2 will be demonstrated for the Ka-band military and commercial systems applications.
To illustrate the application of the power amplifier in a microwave transmitter system, a miniaturized Ka-band 1-W up-converter will be designed and developed by utilizing the fabricated power amplifier MMIC. Furthermore, the performance of the up-converter over temperature range will be considered. The temperature compensation circuits will be also proposed and discussed for improvement.
References
[1] G. Gonzalez, Microwave Transistor Amplifiers Analysis and Design, Prentice Hall, 1997, pp. 212-283.
[2] D. M. Pozar, Microwave Engineering, John Wiley & Sons, 1998, pp. 583-641.
[3] P. H. Ladbrooke, MMIC Design GaAs FETs and HEMTs, Artech House, 1989.
[4] B. S. Virdee, A. S. Virdee and B. Y. Banyamin, Broadband Microwave Amplifiers, Artech House, 2004, pp. 1-16, 103-117.
[5] H. L. Krauss, C. W. Bostian and F. H. Raab, Solid State Radio Engineering, John Wiley & Sons, 1980, pp. 348-476.
[6] S. A. Maas, Nonlinear Microwave Circuits, Artech House, 1988, pp. 359-396.
[7] G. Dambrine, A. Cappy, F. Heliodore, and E. Playez, “A new method for determining the FET small-signal equivalent circuit,” IEEE Trans. Microwave Theory and Tech., vol. 36, pp. 1151-1159, July 1988.
[8] L. Yang and S.I. Long, “New method to measure the source and drain resistance of the GaAs MESFET,” IEEE Electron Device Lett., vol. 7, pp. 75-77, Feb. 1986.
[9] M. Berroth and R.Bosch, “Broad-band determination of the FET small-signal equivalent circuit,” IEEE Trans. Microwave Theory and Tech., vol. 38, pp. 891-895, July 1990.
[10] R. Anholt and S. Swirhun, "Equivalent-circuit parameter extraction for cold GaAs MESFET’s," IEEE Trans. Microwave Theory and Tech., vol. 39, pp. 1243-1247, July 1991.
[11] N. Rorsman, M. Garcia, C. Karlsson, and H. Zirath, "Accurate small-signal modeling of HFET’s for millimeter-wave applications," IEEE Trans. Microwave Theory and Tech., vol. 44, pp. 432-437, Mar. 1996.
[12] S. W. Chen, O. Aina, W. Li, L. Phelps and T. Lee, “An accurately scaled small-signal model for interdigitaled power pHEMT up to 50GHz,” IEEE Trans. Microwave Theory and Tech., vol. 45, pp. 700-703, May 1997.
[13] F. Lenk and R. Doerner, “New extraction method for FET extrinsic capacitances using active bias conditions,” in IEEE MTT-S Int. Microwave Symp. Dig., 1998, pp. 279-282.
[14] Y. L. Lai and K. H. Hsu, “A new pinched-off cold-FET method to determine parasitic capacitances of FET equivalent circuits,” IEEE Trans. Microwave Theory and Tech., vol. 49, pp. 1410-1418, Aug. 2001.
[15] S. C. Cripps, RF Power Amplifiers for Wireless Communication. Norwood, MA: Artech House, 1999, pp. 24-43.
[16] S. C. Cripps, “A theory for the prediction of GaAs FET load-pull power contours,” in IEEE MTT-S Int. Microwave Symp. Dig., 1983, pp. 221-223.
[17] G. L. Matthaei, L. Young, E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Artech House, 1980. pp. 83-161.
[18] H. W. Bode, Network Analysis and Feedback Amplifier Design, D. Van Nostrand Co., 1945, pp. 360-371.
[19] R. M. Fano, “ Theoretical limitations on the broadband matching of arbitrary impedance,” Journal of the Franklin Institute, Vol. 249, pp. 57-84 and 139-154, Jan. 1950.
[20] G. L. Matthaei, L. Young, E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Artech House, 1980. pp. 421-440.
[21] G. L. Matthaei, L. Young, E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Artech House, 1980. pp. 95-97.
[22] E. Green, “Synthesis of ladder networks to give Butterworth or Chebyshev response in the pass band,” Proc. IEE (London) Part IV, Monograph No. 88, 1954.
[23] E. Green, Amplitude-Frequency Characteristics of Ladder Networks, Marconi’s Wireless Telegraph Co., Ltd., Chelmsford, Essex, England, 1954, pp. 62-78.
[24] G. L. Matthaei, L. Young, E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Artech House, 1980. pp. 259-283.
[25] F. McGrath, K. Jackson, E. Heaney, A. Douglas, W. Fahey, R. G. Pratt, and T. Begnoche, "A 1.9-GHz GaAs chip set for the personal handyphone system,” IEEE Trans. Microwave Theory Tech., vol. 43, pp. 1733-1744, July 1995.
[26] T. Yokoyama, T. Kunihisa, H. Fujimoto, H. Takehara, K. Ishida, H. Ikeda, and O. Ishikawa, "High-efficiency low adjacent channel leakage GaAs power MMIC for 1.9 GHz digital cordless phones,” IEEE Trans. Microwave Theory Tech., vol. 42, pp. 2623-2628, Dec. 1994.
[27] T. Sasaki, S. Otaka, T. Maeda, T. Umeda, K. Nishihori, A. Kameyama, M. Hirose, Y. Kitaura, and N. Uchitomi, “A GaAs direct-conversion 1/4π shifted QPSK modulator IC with 0-28 dB variable attenuator for 1.9 GHz personal handy phone system,” in IEEE GaAs IC Symp. Dig., 1995, pp. 241-244.
[28] H. Ono, Y. Umemoto, M. Mori, M. Miyazaki, A. Terano, and M. Kudo, "Pseudomorphic power HEMT with 53.5% power-added efficiency for 1.9-GHz PHS standards,” in IEEE Microwave Theory Tech. Symp. Dig., 1996, pp. 547-550.
[29] B. Nelson, S. Cripps, J. S. Kenney, and A. F. Podell, ”A high-efficiency single-supply RFIC PHS linear power amplifier with low adjacent channel power leakage,” in IEEE Microwave Theory Tech. Symp. Dig., 1996, pp. 49-52.
[30] T. Yokoyama, T. Kunihisa, M. Nishijima, S. Yamamoto, M. Nishitsuji, K. Nishii, M. Nakayama, and O. Ishikawa, “Low current dissipation pseudomorphic MODFET MMIC power amplifier for PHS operating with a 3.5V single voltage supply,” in IEEE GaAs IC Symp. Dig., 1996, pp. 107-110.
[31] M. Kimishima, K. Hayashi, and M. Takahashi, "A 1.9GHz variable gain linear power amplifier MMIC for PHS using novel cascaded MESFETs,” in IEEE Microwave Theory Tech. Symp. Dig., 1997, pp. 1311-1314.
[32] T. Seshita, K. Kawakyu, H. Wakimoto, M. Nagaoka, Y. Kitaura, and N. Uchitomi, “A 2-V operation RF front-end GaAs MMIC for PHS hand-set,” in IEEE Microwave Theory Tech. Symp. Dig., 1998, pp. 167-170.
[33] R. Singh, H. Nakamura, K.S. Tan, and J. Shibata, "A 1.9 GHz fully integrated PHS power amplifier with a novel automatic gate-bias control circuit,” in IEEE Microwave Theory Tech. Symp. Dig., 1998, pp. 431-434.
[34] M. Nakayama, K. Horiguchi, K. Yamamoto, Y. Yoshii, S. Sugiyama, N. Suematsu, and T. Takagi, "A 1.9GHz single-chip RF front-end GaAs MMIC with low-distortion cascode FET mixer for personal handy-phone system terminals,” in IEEE Microwave Theory Tech. Symp. Dig., 1998, pp. 171-174.
[35] K. Ishida, H. Ikeda, H. Kosugi, M. Nishihima, and T. Uwano, "A high efficiency and low distortion GaAs power MMIC design in the wide load impedance range by extended use of load-pull method,” in IEEE Microwave Theory Tech. Symp. Dig., 1999, pp. 775-778.
[36] Personal Handy Phone System, RCR 28, vol. 1, Dec. 20, 1993.
[37] Technical Data of Microwave Power GaAs FET, S9G08A, Toshiba Microwave Semiconductor, Jan. 1996.
[38] T. Ogawa, T. Iwasaki, H. Maruyama, K. Horiguchi, M. Nakayama, Y. Ikeda, and H. Kurebayashi, “High efficiency feed-forward amplifier using RF predistortion linearizer and the modified Doherty amplifier,” in IEEE Microwave Theory Tech. Symp. Dig., 2004, pp. 537-540.
[39] M. Cicolani, “S band amplifier module for solid state transmitter,” in IEEE MTT-S Int. Microwave Symp. Dig., 1992, pp. 141-144.
[40] M. Hanczor, and M. Kumar, “12-KW S-band solid-state transmitter for modern radar systems,” IEEE Trans. Microwave Theory and Tech., vol. 41, pp. 2237-2242, Dec. 1993.
[41] T. Murae, K. Fujii, and T. Matsuno, “A compact S-band MMIC high power amplifier module,” in IEEE MTT-S Int. Microwave Symp. Dig., 2000, pp. 943-946.
[42] J. J. Komiak, S. C. Wang, and T. J. Rogers, “High efficiency 11 watt octave S/C-band PHEMT MMIC power amplifier,” in IEEE MTT-S Int. Microwave Symp. Dig., 1997, pp. 1421-1424.
[43] J. J. Komiak, and D. Helms, “High efficiency 20 watt S/C-band power amplifier MMIC,” in IEEE GaAs IC Symp. Dig., 1992, pp. 187-190.
[44] P. Blount, J. Cuggino, and J. McPhee, “A 3.5GHz fully integrated power amplifier module,” in IEEE GaAs IC Symp. Dig., 2001, pp. 111-114.
[45] P. M. White, and T. M. O’Leary, “A 50% efficiency 8 W C-band PHEMT power MMIC amplifier,” in IEEE GaAs IC Symp. Dig., 1995, pp. 277-280.
[46] J. J. Komiak, “S-band eight watt power amplifier MMIC’s,” in IEEE GaAs IC Symp. Dig., 1988, pp. 45-48.
[47] J. J. Komiak, “Design and performance of an octave band 11 watt power amplifier MMIC,” IEEE Trans. Microwave Theory and Tech., vol. 38, pp. 2001-2006, Dec. 1990.
[48] J. G. Tenedorio, and J. J. Komiak, “GaAs MMIC’s satisfy EW requirements,” Microwave & RF, vol. 27, pp. 51-56, Nov. 1988.
[49] I. Takenaka, H. Takahashi, K. Asano, J. Morikawa, K. Ishikura, M. Kanamori, M. Kuzuhara, and H. Tsutsui, “High efficiency S-band 30W power GaAs FETs,” in IEEE MTT-S Int. Microwave Symp. Dig., 1997, pp. 1417-1420.
[50] U. L. Rohde, A. M. Pavio, and R. A. Pucel, “Accurate noise simulation of microwave amplifiers using CAD,“ Microwave Journal, pp. 130-141, Dec. 1988.
[51] A. F. Podell, “A functional GaAs FET noise model,” IEEE Trans. Electron Devices, vol. 28, pp. 511-517, May 1981.
[52] H. Z. Liu, C. C. Wang, Y. H. Wang, J. W. Huang, C. H. Chang, W. Wu, C. L. Wu, and C. S. Chang, “A four-stage Ku-band 1 watt PHEMT MMIC power amplifier,” in IEEE GaAs IC Symp. Dig., 2002, pp. 33-36.
[53] A. Bessemoulin, M. Parisot, and M. Camiade, “1-watt Ku-band power amplifier MMICs using low-cost quad-flat plastic package,” in IEEE Microwave Theory Tech. Symp. Dig., 2004, pp. 473-476.
[54] Q. Zhang, and S. A. Brown, “Fully monolithic 8 watt Ku-band high power amplifier,” in IEEE Microwave Theory Tech. Symp. Dig., 2004, pp. 1161-1164.
[55] A. Ishimaru, M. Maeda, T. Yoshida, J. Ozaki, and S. Kamihashi, "35 % PAE 6 W Ku-band power amplifier module,” in IEEE Microwave Theory Tech. Symp. Dig., 1999, pp. 955-958.
[56] F. Ali, M. Salib, A. Gupta, and D. Dawson, "A 8-15 GHz, 1W HBT power MMIC with 16 dB gain and 48% peak power added efficiency,” in IEEE GaAs IC Symp. Dig., 1993, pp. 363-366.
[57] M. Salib, F. Ali, A. Gupta, and D. Dawson, "A 1-W, 8-14 GHz HBT amplifier with > 45% peak power added efficiency,” IEEE Microwave Guided Wave Lett., vol. 3, pp., August 1993.
[58] H. Q. Tserng, and P. Saunier, “A high efficiency 7-watt 16 GHz monolithic pseudomorphic HEMT amplifier,” in IEEE Microwave Theory Tech. Symp. Dig., 1993, pp. 87-90.
[59] M. Cardullo, C. Page, D. Teeter, and A. Platzker, “High efficiency X-Ku band MMIC power amplifiers,” in IEEE Microwave Theory Tech. Symp. Dig., 1996, pp. 145-148.
[60] J. I. Upshur, P. E. Goettle, B. D. Geller, R. K. Gupta, and F. Phelleps, “ A fuuly monolithic broadband power amplifier for Ku-band communications satellite applications,” in 35th Midwest Symp., 1992, pp. 1020-1023.
[61] K. Fujii, and H. Morkner, “E-PHEMT, single supply, power amplifier for Ku band applications,” in IEEE Microwave Theory Tech. Symp. Dig., 2003, pp. 859-862.
[62] D. L. Ingram, D. I. Stones, J. H. Elliott, H. Wang, R. Lai, and M. Biedenbender, “A 6-W Ka-band power module using MMIC power amplifiers, ” IEEE Trans. Microw. Theory Tech., vol. 45, pp. 2424-2430, Dec. 1997.
[63] J. J. Komiak, W. Kong, P. C. Chao, and K. Nichols, “Fully monolithic 4 watt high efficiency Ka-band power amplifier,” in IEEE MTT-S Int. Microwave Symp. Dig., 1999, pp. 947-950.
[64] K.-S. Kong, D. Boone, M. King, B. Nguyen, M. Vernon, E. Reese, and G. Brehm, “A compact 30 GHz MMIC high power amplifier (3W CW) in chip and packaged form,” in IEEE GaAs IC Symp. Dig., 2002, pp. 37-39.
[65] A. Bessemoulin, J. Dishong, G. Clark, D. White, P. Quentin, H. Thomas, and D. Geiger, “1-watt broad Ka-band ultra small high power amplifier MMICs using 0.25-µm GaAs PHEMTs,” in IEEE GaAs IC Symp. Dig., 2002, pp. 40-43.
[66] S. Chen, E. Reese, and K.-S. Kong, “A balanced 2 watt compact PHEMT power amplifier MMIC for Ka-band applications,” in IEEE MTT-S Int. Microwave Symp. Dig., 2003, pp. 847-850.
[67] F. Y. Colomb, and A. Platzker, “2 and 4 watt Ka-band GaAs PHEMT power amplifier MMICs,” in IEEE MTT-S Int. Microwave Symp. Dig., 2003, pp. 843-846.
[68] M. R. Lyons, C. D. Grondahl, and S. M. Daoud, “Design of low-cost 4W & 6W MMIC high power amplifiers for Ka-band modules,” in IEEE MTT-S Int. Microwave Symp. Dig., 2004, pp. 1673-1676.
[69] S. Chen, S. Nayak, M.-Y. Kao, and J. Delaney, “A Ka/Q-band 2watt MMIC power amplifier using dual recess 0.15 µm PHEMT process,” in IEEE MTT-S Int. Microwave Symp. Dig., 2004, pp. 1669-1672.
[70] H.-Z. Liu, C.-H. Lin, C.-K. Chu, H.-K. Huang, M.-P. Houng, C.-H. Chang, C.-L. Wu, C.-S. Chang, and Y.-H. Wang, “A single-supply Ku-band 1-W power amplifier MMIC with compact self-bias PHEMTs,” IEEE Microw. Wireless Compon. Lett., vol.16, pp. 330-332, Jun. 2006.
[71] C.-H. Lin, H.-Z. Liu, C.-K. Chu, H.-K. Huang, C.-C. Liu, C.-H. Chang, C.-L. Wu, C.-S. Chang, and Y.-H. Wang, “A compact 6.5 W PHEMT MMIC power amplifier for Ku-band applications,” IEEE Microw. Wireless Compon. Lett., vol.17, pp. 154-156, Feb. 2007.
[72] D. M. Pozar, Microwave Engineering, John Wiley & Sons, 1998, pp. 662-670.
[73] H. K. Chiou, GaAs Microwave Monolithic Integrated Circuit Chip Set Design for 2.4-2.5 GHz ISM Band Front End, Dissertation for Doctor of Philosophy, Department of Electrical Engineering, National Taiwan University, 1997, pp. 220-239.
[74] C. W. Huang, S. J. Chang, W. Wu, C. L. Wu, and C. S. Chang, “A three-stage Ka band PHEMT wideband amplifier MMIC, ” Microwave and Optical Technology Letters, vol. 42, pp. 277-280, Aug. 2004.
[75] C. W. Huang, S. J. Chang, W. Wu, C. L. Wu, and C. S. Chang, “A Ka-band PHEMT diode double-balanced star mixer MMIC, ” Microwave and Optical Technology Letters, vol. 42, pp. 455-458, Aug. 2004.