簡易檢索 / 詳目顯示

研究生: 岳志霖
Yueh, Chih-Lin
論文名稱: 五種砷酸鹽類礦物之高壓拉曼光譜研究
High-Pressure Raman spectroscopic Study of Five Arsenate Minerals
指導教授: 黃怡禎
Huang, Eugene
余樹楨
Yu, Shu-Cheng
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 65
中文關鍵詞: 鑽石高壓砧等價電位拉曼光譜四面體結構砷酸鹽
外文關鍵詞: equivalent valence, diamond anvil cell, arsenate, Raman spectroscopic
相關次數: 點閱:60下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本實驗的目的為驗證前人在四面體結構的複鹽類之高壓拉曼研究中發現之系統性現象。實驗發現,某些複鹽類如磷酸鹽類之中心離子的等價電位﹝e.v.﹞與中心離子群的對稱拉張振動模隨壓力的變化﹝dν/dP﹞呈反比之關係。因此對與磷酸鹽類具等價電位的砷酸鹽類做高壓拉曼實驗,期以驗證兩者的dν/dP值是否相近。本次研究對五種砷酸鹽類礦物﹝Conichalcite、Adamite、Olivenite、Clinoclase、Euchroite﹞做高壓實驗。利用鑽石高壓砧為壓力機,並以紅寶石螢光測壓法測量壓力。得到之實驗結果中證實砷酸鹽對稱拉張振動模之dν/dP值與磷酸鹽相符合,除Euchroite是因晶格中含較多H2O而造成其ν1之dν/dP值較大。

      大多數砷酸鹽的ν1、ν3振動模在常壓下無法區分,但在高壓下則分成明顯的兩個或以上的獨立峰。前人研究中﹝Frost,2002﹞常溫常壓下的Olivenite及Clinoclase都只定出二個對稱拉張拉曼振動模,本實驗中則經仔細的比對後,分別定出三個及五個對稱拉張拉曼振動模。

      ν1振動模通常是複鹽類中最強的振動模,但在砷酸鹽中之Olivenite及Euchroite發現較強的拉曼峰卻是ν3振動模,其dν/dP值顯得較低,而其ν1振動模則在高壓下具有相當於一般磷酸鹽之dν/dP值。

     This goal for this study is to justify the recent discovery that systematic relationship exists between the equivalent valence and the strength of its stretching mode in a complex ion. Previous high-pressure experiments provided evidence that the wavenumber of symmetrical stretching mode (ν1) of the central ions in complex salts, such as the P-O bond in a phosphate has an inverse relationship with their equivalent valancy (e.v.). (dν1/dp). Therefore, it is important to conduct high-pressure Raman spectroscopic study in arsenates with a equivalent valancy equals to phosphates, in order to test if the variation of ν1 with pressure (dν1/dP) of the two complex salts is similar. In this study, five Cu-bearing arsenate minerals (i.e., conichalcite, adamite, olivenite, clinoclase, euchroite) were investigated. Samples were loaded and compressed to pressures up to 15 GPa in a diamond anvil cell and pressure was measured by ruby fluorescence method. The results indicate that the values of dν1/dP in arsenates are similar to phosphates. We also found that the presence of O-H results a larger value of dν1/dP in hydrous arsenates such as euchroite.
     
     In most arsenates, ν1 and ν3 modes cannot be distinguished at the ambienty conditions. However, when under pressure, they show two or more independent peaks which can be identified spearately. Moreover, we observed more symmetrical stretching modes in some aresenates. For instance, we observed three and five modes in olivenite and clinoclase, respectively, which were more than two modes as reported by Frost (2002).

     The ν1 mode is usually the most intense vibration mode in the complex salts. But in olivenite and euchroite, the ν3 mode is more intense than the ν1 mode. In contrast with dν1 /dP which are similar to those of phosphate, dν3/dP has a value much lower than dν1 /dP.

    目錄 第一章  前言1 1-1 研究目的1 1-2 礦物簡介3 1-2-1砷銅鈣石﹝Conichalcite﹞3 1-2-2 水砷鋅石﹝Adamite﹞3 1-2-3橄欖銅礦﹝Olivenite﹞5 1-2-4光線石﹝Clinoclase﹞6 1-2-5翠綠砷銅石﹝Euchroite﹞7 1-3 前人研究9 第二章  實驗方法及原理10 2-1 拉曼光譜10 2-2 紅寶石測壓法14 2-3 鑽石高壓砧  16 第三章  實驗結果 19 3-1 Conichalcite﹝CaCuAsO4(OH)﹞  19 3-2 Adamite﹝Zn2AsO4(OH)﹞  23 3-3 Olivenite﹝Cu2AsO4(OH)﹞  26 3-4 Clinoclase﹝Cu3AsO4(OH)3  30 3-5 Euchroite﹝Cu2AsO4(OH)‧3H2O﹞  34 第四章  討論37 4-1常壓下砷酸鹽之拉曼光譜37 4-1-1常壓下砷酸鹽700-900cm-1間光譜37 a. 拉曼峰ν1、ν3在此區域混合存在之差異37 b. 常壓時Olivenite在此區域的三個拉曼峰值41 c. 常壓時Clinoclase之拉曼光譜43 4-1-2常壓下砷酸鹽3100-3700cm-1間光譜45 4-2砷酸鹽ν1之dν/dP值46 4-2-1 Conichalcite 在700-900cm-1間之dν/dP值46 4-2-2 Adamite在700-900cm-1間之dν/dP值46 4-2-3 Olivenite在700-900cm-1間之dν/dP值48 a.3.6GPa前的資料48 b.最強峰不是ν1峰50 c.斜率很小之dν/dP值52 d.9.6GPa之後的資料53 4-2-4 Cinoclase在700-900cm-1間之dν/dP值 53 4-2-5 Euchroite在700-900cm-1間之dν/dP值 55 4-2-6 五種礦物之dν/dP值比較-57 第五章  結論 61 英文參考文獻 62 中文參考文獻 65 表目錄 表1-1複鹽類中等價電位與dν1/dP值之闗係2 表3-1 Conichalcite 700-900cm-1間拉曼峰隨壓力變化之數值21 表3-2 Conichalcite 700-900cm-1間拉曼峰值在壓力區間內的dν/dP值22 表3-3 Adamite 700-900cm-1間拉曼峰隨壓力變化之數值24 表3-4 Adamite 700-900cm-1間拉曼峰值在壓力區間內的dν/dP值25 表3-5 Olivenite 700-900cm-1間拉曼峰隨壓力變化之數值28 表3-6 Olivenite 700-900cm-1間拉曼峰值在壓力區間內的dν/dP值29 表3-7 Clinoclase 700-900cm-1間拉曼峰隨壓力變化之數值32 表3-8 Clinoclase 700-900cm-1間拉曼峰值在壓力區間內的dν/dP值33 表3-9 Euchroite 700-900cm-1間拉曼峰隨壓力變化之數值35 表3-10 Euchroite 700-900cm-1間拉曼峰值在壓力區間內的dν/dP值36 表4-1 Olivenite在0.6-4.9GPa之前之dν/dP值49 表4-2前人研究之各振動拉張模之dν/dP值51 表4-3 Clinoclase將分裂峰再次做峰值比對後,在0.4-4.4GPa之間的dν/dP值54 表4-4 Euchroite在0.1-4.9GPa之dν/dP值56 表4-5 將實驗壓力區間全都視為無變化所做出之ν1的dν/dP值58 表4-6五種砷酸鹽礦物dν/dP值數據總表60 圖目錄圖1-1 Adamite之結構4 圖1-2 Clinoclase沿a軸方向的投影6 圖1-3從[100]方向投影之Euchroite結構7 圖1-4 Euchroite從[001]方向的投影8 圖2-1拉曼散射原理和過程12 圖2-2拉曼光譜高壓實驗示意圖13 圖2-3 紅寶石中Cr3+離子能階和其吸收和螢光光譜之示意圖15 圖2-4活塞套筒式鑽石高壓砧的剖面圖17 圖2-5 (a)鑽石高壓砧操作的原理;(b)鑽石、夾套及標本室的部放大圖18 圖3-1 Conichalcite在壓力下之拉曼光譜20 圖3-2 Conichalcite 700-900cm-1間拉曼峰對壓力投圖22 圖3-3 Adamite在壓力下之拉曼光譜23 圖3-4 Adamite 700-900cm-1拉曼峰對壓力投圖25 圖3-5 Olivenite在壓力下之拉曼光譜27 圖3-6 Olivenite 700-900cm-1拉曼峰對壓力投圖29 圖3-7 Clinoclase在壓力下之拉曼光譜31 圖3-8 Clinoclase 700-900cm-1間拉曼峰值對壓力投圖33 圖3-9 Euchroite在壓力下之拉曼光譜34 圖3-10 Euchroite 700-900cm-1間拉曼峰值對壓力投圖36 圖4-1五種砷酸鹽礦物常溫常壓之拉曼光譜資料﹝黃克駿38 圖4-2七種砷酸鹽礦物常溫常壓之拉曼光譜資料﹝黃克駿﹞39 圖4-3本次實驗之五個礦物常溫常壓拉曼光譜40 圖4-4為(Frost ,2002)在常壓下Olivenite之拉曼光譜42 圖4-5本實驗之Olivenite拉曼光譜42 圖4-6為(Frost,2002) Clinoclase在常壓下之拉曼光譜43 圖4-7為(Frost ,2002)在77K下Clinoclase之拉曼光譜44 圖4-8為本實驗Clinoclase之常壓拉曼光譜44 圖4-9常壓下五種砷酸鹽礦物3100-3700cm-1區間之拉曼光譜45 圖4-10為Adamite在鑽石高壓砧下及常壓時之拉曼光譜47 圖4-11重新比對之Olivenite之投圖49 圖4-12 Ravindran於2001對﹝ZrWO4﹞所做之常溫常壓之拉曼光譜52 圖4-13 Clinoclase將分裂峰再次做峰值比對後,其拉曼峰值隨壓力改變量的投圖54 圖4-14 Euchorite將低壓處拉曼峰再次定值所做之拉曼峰對壓力的投圖56 圖4-15 單斜晶系Olivenite及Clinoclase之ν1的dν/dP值58 圖4-17 斜方晶系Conichalcite、Euchroite、Adamiteν1的dν/dP值59

    Berry L. G. (1951) Observations of conichalcite, cornwallite, euchroite, liroconite and olivenite. Am. Mineral, 36, 484-503.

    Chisholm J. E. (1985) Cation Segregation and the O-H Stretching Vibration of the Olivenite-Adamite Series. Phys Chem Minerals, 12, 185-190.

    Eby R. K., and F. C. Hawthorne (1989) Euchroite, a Heteropolyhedral Framework Structure. Acta Cryst., C45, 1479-1482.

    Fadini A., and F. M. Schnepel (1989) Vibrational spectroscopy-methods and applications. Elhs Gorwood Limited, England, 205P

    Finney J. J. (1966) Refinement of the crystal structure of euchorite, Cu2(AsO4)(OH).3H2O. Acta Cryst., 21, 437-440.

    Frost R. L., Williams P. A., Martens W. N., Kloprogge J. T., and P. Leverett (2002) Raman spectroscopy of the basic copper phosphate minerals cornetite, libethenite, pseudomalachite, reichenbachite and ludjibaite. J. Raman spectrosc., 33, 260-263.

    Frost R. L., Kloprogge T., Weier M. L., Martens W. N., Ding Z., and H. G. H. Edwards (2003) Raman spectroscopy of selected arsenates-implications for soil remediation. Spectrochimica Acta, Part A, 59, 2241-2246.

    Ghose S., Fehlmann M., and M. Sundaralingam (1965) The crystal Structure of Clinoclase, Cu3AsO4(OH)3. Acta Cryst., 18, 777-787.

    Hill R. J. (1976) The crystal structure and infrared properties of adamite. Am Mineral, 61, 979-986.

    Huang E. (1992) Pressure measurements in diamond anvil cell by ruby fluorescence method and some application. J. Geol. Soc. China, 35, 2, 135-150.

    Lipinska-Kalita K. E., Kruger M. B., Carlson S., and A. M. Krogh Andersen (2003) High-pressure studies of titanium pyrophosphate by Raman scattering and infrared spectroscopy. Physica B, 337, 221-229.

    Mao H. K., and P. M. Bell (1978) Megabar Cell, Carnegie Inst. Wash. Year Book, 77, 904-908.

    Mcillian P. (1985) Vibration spectroscopy in the mineral sciences, Mineralogical Society of American, 14, pp, 9-63, edited by Kieffer, S.W. and Navrotsky, A.

    Paques-Ledent M. Th., and P. Tarte (1973) Vibrational studies of olivine-type compounds-II Orthophosphates, -arsenates and –Vanadates AIBIIXVO4. Spectrochimica Acta, 30A, 673-689.

    Ravindran T. R., Akhilesh K. A., and T. A. Mary (2001) High-pressure Raman spectroscopic study of zirconium tungstate. J. Phys. Condens. Matter 13, 11573-11588.

    Shannon R. D., and C. Calvo (1973). Crystal structure of Cu5V2O10. Acta Cryst., B29, 1338-1345.

    Toman K. (1977) The Symmertry and Crystal Structure of Olivenite. Acta Cryst., B33, 2628-2631.

    Toman K. (1978) Ordering in Olivenite-Adamite Solid Solutions. Acta Cryst., B34, 715-721.

    Valentín G. B., Mercedes T., Amaya A., Mercedes C., and N. Javier (2003) Diamond as pressure sensor in high-pressure Raman spectroscopy using sapphire and other gem anvil cells. J. Raman Spectrosc., 34, 264–270.

    Martens W. N., Forst R. L., Kloprogge J. T., and P. A.Williams (2003) The basic copper arsenate minerals olivenite, cornubite, cornwallite, and clinoclase: An infrared emission and Raman spectroscopic study. Am Mineral, 88, 501-508.

    Xu J. A., Mao H. K., and J. H. Russell (2002) The gem anvil cell: high-pressure behaviour of diamond and related materials. J. Phys. Condens. Matter 14, 11549–11552.

    王冠益 (2001) 摩星石砧:一種新型的高溫高壓砧。國立成功大學地球科學研究所碩士論文, 56頁。

    李玉玲 (1999) 磷酸鹽礦物-磷灰石、獨居石之高溫、高壓光譜研究。國立成功大學地球科學研究所碩士論文, 117頁。

    李佩倫 (2000) BaSO4-PbSO4固溶系列之高溫高壓相變研究。國文成功大學地球科學研究所博士論文,139頁。

    余樹楨 (1989) 晶體之結構與性質。渤海堂文化事業有限公司, 台北, 569頁。

    徐濟安、毛河光及P. M. Bell (1987) 百萬氣壓下強壓校準及5.5Mbar靜強壓的獲得, 物理學報, 36, No. 4, 501-510。

    陳燕華 (1998) 高壓下硫酸鋇、硫酸鍶二元相系之晶相轉變研究。國立成功大學地球科學研究所碩士論文, 60頁。

    黃克駿 未發表。

    黃怡禎譯 (2000) 礦物學。地球科學文教基金會, 台北, 686頁。

    黃慶祥 (1997) CaSO4-H2O系統內礦物之高壓相變研究。國立成功大學地球科學研究所碩士論文, 72頁。

    楊聖恩 (1994) CaCO3之高壓拉曼光譜研究。國立台灣大學地質學研究所碩士論文, 117頁。

    下載圖示 校內:立即公開
    校外:2005-08-30公開
    QR CODE