| 研究生: |
陳柏任 Chen, Po-Jen |
|---|---|
| 論文名稱: |
人類介白素19 和介白素20 之啟動子的調控分析及介白素19 的生物功能性探討 Analysis of human IL-19 and IL-20 promoters and study of IL-19 biological function |
| 指導教授: |
張明熙
Chang, Ming-Shi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學研究所 Department of Biochemistry |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 全身性紅斑狼瘡 、介白素20 、介白素19 、牛皮癬 |
| 外文關鍵詞: | IL-20, SLE, psoriasis, IL-19 |
| 相關次數: | 點閱:87 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
細胞激素(Cytokine)在人體中扮演著相當重要的角色,其功能主要在於免疫系統方面,舉凡血球的分化、生成及對抗外來病原體入侵的反應。介白素19(IL-19)和介白素20(IL-20)都是屬於介白素10 家族(IL-10 family)的其中一員,此家族包括了IL-10 、IL-19 、IL-20 、IL-22 、MDA-7(IL-24) 和AK155(IL-26)。為了要了解人類介白素19 和介白素20 的基因調控,於是我們分析了它們的啟動子(promoter)。將221 位個體(58 個健康人、138 個全身紅斑性狼瘡病患和25 個氣喘病患)的IL-19 啟動子定序後,利用電腦軟體加
以組合及比對分析,發現在轉錄起始位置的上游 -743 和 -744 間有74 bp insertion -deletion polymorphism 的現象。且將不同長度的片段分別構築在含有luciferase 基因的pGL3 enhancer 質體上,並進行transfection 至MDCK cells中表現。之後藉由luciferase 的活性分析,發現包含此74 bp 的PA’ (-1860~137)
會降低promoter 活性,但在PB’ (-1120~137) 和PC’(-840~137)時則會使活性增加。此外,我們也發現在介白素19 的啟動子上有兩段相似度極高的區域,且轉錄因子-AML1 的結合位置 (GTGGTA;-142~ -137)剛好位在這相似度高的區域中。於是我們將一個nucleotide(-139)進行突變後,發現promoter 的活性降低了70%。所以我們又利用EMSA 的方法更進一部證實此nucleotide 的位置的確對DNA 和轉錄因子的結合上扮演了關鍵性的角色。而在人類介白
素20 的啟動子上,也發現了318 bp insertion-deletion polymorphism 的現象,且將其構築在pGL3 basic 質體上以進行transfection 來探討,結果發現包含此318 bp 的promoter 皆較不含318 bp 的活性低。最後為了想要研究介白素19 是否有其他未知的生物性功能,於是我們將IL-19 處理人類CD8+ T 細胞後,抽取RNA 並轉成cDNA,再以Real-time PCR 來分析,發現IL-19 會正
向調控人類CD8+ T 細胞中的KGF-1 轉錄本。
Cytokines are important molecules in inflammatory processes, the development and maintenance of immune responses and haematopoiesis. Both IL-19 and IL-20 belong to the IL-10 family, which includes IL-10, IL-19, IL-20, IL-22, MDA-7 (IL-24), and AK155 (IL-26). To understand the gene regulation of human IL-19 and IL-20, we analyzed their promoter regions. After sequencing the IL-19 promoters from 221 individuals, including 58 normals, 138 patients with SLE, and 25 patients with asthma, we discovered that there is a 74 bp insertion-deletion polymorphism between –743 and –744. Insertion of this 74 bp decreased the promoter activity in the fusion gene (PA’) containing 2071 bp (from –1860 to 137) linked to the pGL3 enhancer vector, but increased the promoter activity of the PB’ (from –1120 to 137) and the PC’(from –840 to 137). Furthermore, we also observed that there was homology on two regions (-1691~ -1491 and -235~ -37) of the IL-19 promoter. The transcription factor, AML1, binding site (GTGGTA ; -142~-137) is located on this region. Mutation of one nucleotide (-139) decreased luciferase activity by 70%. Finally, the EMSA data proved that this nucleotide was critical for DNA-transcription factor interaction. In addition, there is also a 318 bp insertion-deletion polymorphism on the IL-20 promoter. Insertion of this 318 bp decreased the promoter activity in all the fusion genes linked to the pGL3 basic vector. To study the biological function of IL-19, we treated CD8+ T cell with IL-19. The real-time PCR data showed that IL-19 can up-regulate the transcript of keratinocyte growth factor-1 (KGF-1) in CD8+ T cell.
1. de Waal Malefyt, R.D., Abrams, J., bennet, B., Figdor, G.C., de Vries, J.E.
Interleukin-10 inhibits cytokine synthesis by human monocytes: an autoregulatory
role of IL-10 produced by monocytes. J. Exp Med 174: 1209-1220, 1991.
2. Vieira, P., de Waal Malefyt, R., Dang, W., et al. Isolation and expression of human
cytokine synthesis inhibitory factor (CSIF) cDNA clones: homology to Epstein
Barr virus open reading frame BCRFI. Proc. Natl Acad. Sci. USA 88: 1172-1176,
1991.
3. Burdin, N., Peronne, C., Banchereau, J. and Rousser, F. Epstein-Barr virus
transformation induces B lymphocytes to produce human interleukin 10. J. Exp.
Med. 177: 295-304, 1993.
4. Benjamin, D., Knobloch, T.J. and Dayton, M.A. Human B-cell interlukine-10:
B-cell lines derived from patients with acquired immunodeficiency syndrome and
Burkitt’s lymphoma constitutively secrete large quantities of interlukine-10. Blood
80: 1289-1298, 1992.
5. Yssel, H., De Waal Malefyt, R., Roncarolo, M.G., et al. IL-10 is produced by
subsets of human CD4+ T cell clones and peripheral blood T cells. J. immunol. 149:
2378-2384, 1992.
6. Wanidworanun, C. & Strober, W. Predominant role of tumor necrosis factor-alpha
in human monocyte IL-10 synthesis J. Immunol. 151: 6853-6861, 1993.
7. Llorente, L., Richaud-Patin, Y., Fior, R., Alcocer-Varela, J., Wijdnes, J.,
Morel-Fourrier, B., Galanaud, P. & Emilie, P. In vivo production of interleukin-10
by non-T cells in rheumatoid arthritis, Sjogren's syndrome, and systemic lupus
erythematosus. A potential mechanism of B lymphocyte hyperactivity and
autoimmunity. Arthritis Rheum. 37: 1647–1655, 1994.
8. Cash, J. J., Splawski, J. B., Thomas, R., McFarlin, J. F., Schulze- Koops, H., Davis,
L. S., Fujita, K. & Lipsky, P. E. Elevated interleukin-10 levels in patients with
rheumatoid arthritis. Arthritis Rheum. 38: 96–104, 1995.
9. Perez, L., Orte, J. & Brieva, J. A. Terminal differentiation of spontaneous
rheumatoid factor-secreting B cells from rheumatoid arthritis patients depends on
endogenous interleukin-10. Arthritis Rheum. 38: 1771–1776, 1995.
10. Itoh, K. & Hirohata, S. The role of IL-10 in human B cell activation, proliferation,
and differentiation. J. Immunol. 154: 4341–4350, 1995.
11. Llorente, L., Zou, W., Levy, Y., Richaud-Patin, Y., Wijdenes, Y., Alcocer-Varela,
J., Morel-Fourrier, B., Brouet, J.C., Alarcon- Segovia, D., Galanaud, P., et al. Role
of interleukin 10 in the B lymphocyte hyperactivity and autoantibody production of
human systemic lupus erythematosus J. Exp. Med. 181: 839–844, 1995.
12. Jinquan, T., Larsen, C. G., Gessser, b., Matsushima, K. & Thestrup-Pedersen, K.
Human IL-10 is a chemoattractant for CD8+ T lymphocytes and an inhibitor of
IL-8-induced CD4+ T lymphocyte migration. J. Immunol. 151: 4545-4551, 1993.
13. Matsuda, M., Salazar, F., Petersson, M., Masucci, G., Hansson, J., Pisa, Zhang, Q.
C., Masucci, M. G. & Kiessling, R. Interleukin 10 pretreatment protects target cells
from tumor- and allo- specific cytotoxic T cells and downregulates HLA class I
expression. J. Exp. Med. 180: 2371–2376, 1994.
14. Kim, J., Modlin, R. L., Moy, R. L., Dubinett, S. M., McHugh, T., Nickloff, B. J. &
Uyemura, K. IL-10 production in cutaneous basal and squamous cell carcinomas.
A mechanism for evading the local T cell immune response. J. Immunol. 155:
2240–2247, 1995.
15. Fortis, C., Foppoli, M., Gianotti, L., Galli, L., Citterio, G., Consogno, G., Gentilini,
O. & Braga, M. Increased interleukin-10 serum levels in patients with solid
tumours. Cancer Lett. 104: 1-5, 1996.
16. Shou Y, Baron S, Poncz M. An Sp1-binding silencer element is a critical negative
regulator of the megakaryocyte-specific alphaIIb gene. J. Biol. Chem. 273:
5716-5726, 1998.
17. Kube D, Platzer C, von Knethen A, Straub H, Bohlen H, Hafner M, Tesch H.
Isolation of the human interleukin 10 promoter. Characterization of the promoter
activity in Burkitt's lymphoma cell lines.Cytokine 7: 1-7, 1995.
18. Gibson AW, Edberg JC, Wu J, Westendorp RG, Huizinga TW, Kimberly RP. Novel
single nucleotide polymorphisms in the distal IL-10 promoter affect IL-10
production and enhance the risk of systemic lupus erythematosus. J Immunol. 166:
3915-22, 2001.
19. Myhr KM, Vagnes KS, Maroy TH, Aarseth JH, Nyland HI, Vedeler CA.
Interleukin-10 promoter polymorphisms in patients with multiple sclerosis. J.
Neurol. Sci. 202: 93-7, 2002.
20. Dumoutier, L., Leemans, C., Lejeune, D., Kotenko, S. V., and Renauld, J. C.
Cutting edge: STAT activation by IL-19, IL-20 and mda-7 through IL-20 receptor
complexes of two types. J.Immunol. 167: 3545-3549, 2001.
21. Gallagher G., Dickensheets H., Eskdale J., Izotova L. S., Mirochnitchenko, O. V.,
Peat, J. D., Vazquez, N., Pestka, S., Donnelly, R. Kotenko SV. Cloning, expression
and initial characterization of interleukin-19 (IL-19), a novel homologue of human
interleukin-10 (IL-10). Genes Immun 1: 442-50,2000.
22. Wolk K, Kunz S, Asadullah K et al. Cutting edge: immune cells as sources and
targets of the IL-10 family members? J. Immunol. 168: 5397-5402, 2002.
23. Liao YC, Liang WG, Chen FW, Hsu JH, Yang JJ, Chang MS. IL-19 induces
production of IL-6 and TNF-alpha and results in cell apoptosis through TNF-alpha.
J Immunol. 169: 4288-4297, 2002.
24. Romer J, Hasselager E, Norby PL, Steiniche T, Thorn Clausen J, Kragballe K.
Epidermal overexpression of interleukin-19 and -20 mRNA in psoriatic skin
disappears after short-term treatment with cyclosporine a or calcipotriol. J. Invest.
Dermatol. 6: 1306-11, 2003.
25. Parrish-Novak, J., XU, W., Brender, T. et al. IL-19, IL-20, and IL-24 signal
through two distinct receptor complexes: Differences in receptor-ligand
interactions mediate unique biological functions. J. Biol. Chem. In press, 2002.
26. Xie, M. H., Aggarwal, S., Ho, W.H., Foster, J., Zhang, Z., Stinson, J., Wood, W.J.,
Goddard, A.D., and A. L. Gurney. Interleukin (IL)-22, a novel human cytokine that
signals through the interferon receptor related proteins CRF2-4 and IL-22R. J. Biol.
Chem. 275: 31335-31339, 2000.
27. Kotenko, S. V., Izotova, L. S., Mirochnitchenko, O. V., Esterova, E., Dickensheets,
H., Donnelly, R. P., and Pestka, S.. Identificationof the functional interleukin-22
(IL-22) receptor complex: the IL-10R2 chain (IL-10Rβ) is a common chain of both
the IL-10 and IL-22 (IL-TIF) receptor complexes. J. Biol. Chem. 276: 2725-2732,
2001.
28. Aggarwal, S., Xie, M. H., Maruoka, M. et al. Acinar cells of the pancreas are a
target of interlukine-22. J. Interferon Cytokine Res. 21: 1047-1053, 2001.
29. Zhang, R., Tan, Z., Liang, P. Identification of a novel ligand-receptor pair
constitutively activated by ras oncogenes. J. Biol. Chem. 275: 24436-24443, 2000.
30. Garn, H., Schmidt, A., Grau, V. et al. IL-24 is expressed by rat and human
macrophages. Immunobiology 205: 321-334, 2002.
31. Sarkar, D., Su, Z.Z., Lebedeva, I.V. et al. mda-7 (IL-24) mediated selective
apoptosis in human melanoma cells by inducing the coordinated overexpression of
the GADD family of genes by means of p38 MAPK. Proc. Natl. Acad. Sci. USA 99:
10054-10059, 2002.
32. Su, ZZ., Madireddi, MT., Lin JJ. et al. The cancer growth suppressor gene mda-7
selectively induces apoptosis in human breast cancer and inhibits tumor growth in
nude mice. Proc. Natl. Acad. Sci. USA 95: 14400-14405, 1998.
33. Mhashilkar, AM., Schrock, RD., Hindi, M. et al. Melanoma differentiation
associated gene-7 (mda-7): a novel anti-tumor gene for cancer therapy. Mol. Med.
7: 271-282, 2001.
34. Knappe, A., s. Hor, S. Wittmann, and H. Fickenscher. Induction of a novel cellular
homolog of interleukin-10, Ak155, by transformation of T lymphocytes with
herpesvirus saimiri. J. Virol. 74: 3881-3887, 2000.
35. Liu YN, Kang BB, Chen JH. Transcriptional regulation of human osteopontin
promoter by C/EBPalpha and AML-1 in metastatic cancer cells. Oncogene 1:
278-88, 2004.
36. Blumberg, H., Conklin, D., Xu, W. F., Grossmann, A., Brender, T., Carollo, S.,
Eagan, M., Foster, D., Haldeman, B. A., Hammond, A., Haugen, H., Jelinek, L.,
Kelly, J. D., Madden, K., Maurer, M. F., Parrish-Novak, J., Prunkard, D., Sexson,
S., Sprecher, C., Waggie, K., West, J., Whitmore, T. E., Yao, L., Kuechle, M. K.,
Dale, B. A., and Chandrasekher, Y. A. Interleukin 20 discovery, receptor
identification, and role in epidermal function. Cell 104: 9-19, 2001.
37. Kunz, M., Henseleit-Walter, U., Sorg, C., Kolde, G. Macrophage marker 27E10 on
human keratinocytes helps to differentiate discoid lupus erythematosus and
Jessner’s lymphocytic infiltration of the skin. Eur J Dermatol. 9: 107-110, 1999.
38. Jan D. Bos and Menno A. De Rie. The pathogenesis of psoriasis: immunological
facts and speculations. Immunology Today. 20: 40-46, 1999.
39. P Strange, KD Cooper, ER Hansen, G Fisher, JK Larsen, D Fox, C Krag, JJ
Voorhees, and O Baadsgaard. T-lymphocyte clones initiated from lesional psoriatic
skin release growth factors that induce keratinocyte proliferation. J. Invest.
Dermatol., 101: 695-700, 1993.
40. Grossman, R.M., Krueger, J., Yourish, D., Granelli-Piperno, A., Murphy, D.P.,
May, L.T., Kupper, T.S., Sehgal, P.B., Gottlieb, A.B. Interleukin 6 is expressed in
high levels in psoratic skin and stimulates proliferation of cultured human
keratinocytes. Proc. Natl. Acad. Sci. 86: 6367-6371, 1989.
41. Turksen, K., Kupper, T.S., Degenstein, L., Williams, I., Fuchs, E. Interleukin 6:
insights to its function in skin by overexpression in transgenic mice. Proc. Natl.
Acad. Sci. 89: 5068-5072, 1992.
42. Sawamura, D., Meng, X., Ina, T., Sato, M., Tamai, K., Hanada, K., Hashimoto.
Induction of keratinocyte proliferation and lymphocytic infiltration by in vivo
introduction of the IL-6 gene into keratinocytes and possibility of keratinocyte
gene therapy for inflammatory skin diseases using IL-6 mutant genes. J. Immunol.
161: 5633-5639, 1998.
43. Sato, M., Sawamura, D., Ina, S., Yaguchi, T., Hanada, K., Hashimoto, I. In vivo
introduction of the interleukin 6 gene into human keratinocytes: induction of
epidermal proliferation by the fully spliced form of interleukin 6, but not by the alternatively spliced form. Arch. Dermatol. Res. 27: 400-404, 1999.
44. Sugawara, T., Gallucci, R.M., Simeonova, P.P., Luster, M.I. Regulation and role of
interleukin 6 in wounded human epithelial keratinocytes. Cytokine 15: 328-336,
2001.
45. Daliani, D., Ulmer, R.A., Jackow, C., Pugh, W., Gansbacher, B., Cabanillas, F.,
Divic, M., Sarris, A.H. Tumor necrosis factor-alpha and interferon-gamma, but not
HTLV-1, are likely factors in the epidermotropism of cutaneous T-cell lymphoma
via induction of interferon-inducible protein-10. Leuk. Lymphoma 29: 315-328,
1998.
46. Hancock GE, Kaplan G, Cohn ZA: Keratinocyte growth regulation by the products
of immune cells. J Exp Med 168: 1395-1402, 1998.
47. Gesser, B., H. Leffers, T. Jinquan, C. Vestergaard, N. Kirstein, S. Sindet-Pedersen,
S. L. Jensen, K. Thestrup-Pedersen, and C. G. Larsen. Identification of functional
domains on human interleukin 10. Proc. Natl. Acad. Sci. USA 94: 14620-14625,
1997.
48. Ding, Y., L. Qin, S. V. Kotenko, S. Pestka, and J. S. Bromberg. A single amino
acid determines the immunostimulatory activity of interleukin 10. J. Exp. Med. 191:
213-224, 2000.
49. Brightbill, H. D., S. E. Plevy, R. L. Modlin, and S. T. Smale. A prominent role for
Sp-1 during lipopolysaccharide-mediated induction of the IL-10 promoter in
macrophages. J. Immunol. 164: 1940-1951, 2000.
50. Valdimarsson H, Baker BS, Jonsdottri I, Fry L. Psoriasis: a disease of abnormal
keratinocyte proliferation induced by T lymphocytes. Immunol Today 7: 256-259,
1986.
51. De Rie MA, Cairo I, Van Lier RAW and Bos JD. Expression of the T-cell
activation antigens CD27 and CD28 in normal and psoriatic skin. Clin. Exp.
Dermatol. 21: 104-111, 1996.
52. Gottlieb SL, Gilleaudeau P, Johnson R, Estes L, Woodworth TG, Gottlieb AB,
Krueger JG. Response of psoriasis to a lymphocyte-selective toxin (DAB389IL-2)
suggests a primary immune, but not keratinocyte, pathogenic basis. Nat Med. 1:
442-447, 1995.
53. Dokka, S., X. Shi, S. Leonard, L. Wang, V. Castranova, and Y. Rojanasakul.
Interleukin-10-mediated inhibition of free radical generation in macrophages. Am.
J. Physiol. Lung Cell Mol. Physiol. 280: L1196-L1202, 2001.