簡易檢索 / 詳目顯示

研究生: 江炫儒
Chiang, Hsuan-Ju
論文名稱: 銀/氯化銀用於羅丹明B降解之效能
The performance of Ag/AgCl for photodegradation of rhodamine B
指導教授: 洪昭南
Hong, Chau-Nan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 72
中文關鍵詞: 光催化可見光氯化銀
外文關鍵詞: Photocatalysis, visible light, silver chloride
相關次數: 點閱:46下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是想結合銀特殊之光學性質與氯的殺菌能力,使得觸媒在可見光下也能分解有機汙染物,透過改變不同的前驅鹽、保護劑、還原劑的濃度和溫度,希望能製備出粒徑單一可均勻分散的奈米銀,改變不同氯源之比例以合成之銀/氯化銀核殼結構,探討其對光催化效能之影響。
    研究結果透過SEM、TEM、XRD、UV-Vis等儀器進行分析,以SEM和TEM觀察表面型態,以XRD分析光觸媒之晶相,以UV-Vis分析光觸媒之吸收波長,最後以相同莫耳數比的硝酸銀和三氯化鐵合成之光觸媒有最好的光催化活性,在300瓦的氙燈光源之下,以20mg的光觸媒降解50ml濃度為10ppm的羅丹明B,於20分鐘內降解率高達99%。

       The purpose of this study is to combine the specific optical activity of silver with the sterilization ability of chlorine, so that the photocatalyst can decompose organic pollutants under visible light. By changing different concentration of precursor salts、protective agents、and reducing agents and temperature,it is hoped to prepare a uniform dispersed nanosilver with a single particle size, changing the ratio of different chlorine sources to synthesized the silver/silver chloride core-shell structure, and discuss the effect on photocatalytic performance.
       The characteristic analysis of silver/silver chloride core-shell structure were performed by SEM、TEM、XRD、UV-Vis.From the SEM and TEM images,we can observe the surface morphology.From XRD images ,we can confirm the crystal lattice of photocatalyst. From the UV-Vis images,we can see the absorption wavelength of photocatalyst .Photocatalyst synthesized by silver nitrate and ferric chloride with the same molar ratio has the best photocatalytic activity . Under the xenon light source with 300 watt , a 20mg photocatalyst degradation in 50ml of Rhodamine B , which concentration is 10ppm.The decomposition rate can reach up to 99% in 20 minute.

    目錄 摘要 I Abstract II Extend Abstract III 致謝 VIII 目錄 IX 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1-1 前言 1 1-2 太陽能與可見光 2 1-3 研究動機 4 第二章 文獻回顧 5 2-1 奈米材料與奈米技術 5 2-1-1 奈米材料定義 5 2-1-2 奈米材料應用 8 2-1-3 奈米材料製備 9 2-2 奈米銀簡介 12 2-3 奈米銀性質 13 2-4 奈米銀合成 15 2-5 表面電漿簡介 17 2-6 鹵化銀簡介 21 2-7 光催化機制 22 2-8 羅丹明B簡介 23 第三章 實驗步驟與方法 24 3-1 實驗藥品 24 3-2 實驗設備 26 3-3 實驗儀器 27 3-3-1 掃描式電子顯微鏡 27 3-3-2 穿透式電子顯微鏡 28 3-3-3 X-射線繞射儀 29 3-3-4 紫外光可見光光譜儀 31 3-4 實驗流程圖 33 3-4-1 製備奈米銀之流程 33 3-4-2 製備銀/氯化銀核殼結構之流程 34 3-5 實驗步驟 35 3-5-1 製備銀/氯化銀核殼結構 35 3-5-2 光觸媒用於羅丹明B光降解之反應 36 3-5-2-1 光催化反應系統 36 3-5-2-2 羅丹明B光降解之背景實驗 38 3-5-2-3 羅丹明B 在可見光下之光降解實驗 39 第四章 結果與討論 40 4-1 奈米銀之合成 40 4-1-1 金屬前趨鹽濃度之影響 40 4-1-2 保護劑濃度之影響 43 4-1-3 還原劑濃度之影響 46 4-1-4 溫度之影響 49 4-2 光觸媒性質鑑定 51 4-2-1 光觸媒之XRD探討 51 4-2-2 光觸媒之SEM探討 53 4-2-3 光觸媒之TEM探討 56 4-2-4 光觸媒之UV-Vis探討 58 4-3 背景實驗 59 4-3-1 羅丹明B之全光譜圖與濃度校正曲線 59 4-3-2 不加光觸媒直接光解實驗 61 4-3-3 光觸媒之吸附實驗 62 4-4 光催化降解實驗 63 4-4-1 不同比例光觸媒降解結果 63 第五章 結論 65 第六章 未來展望 66 第七章 參考文獻 67

    [1] N.L.Panwar .,et al., Role of renewable energy sources in environmental protection: A review , Renewable and Sustainable Energy Reviews , 15 , 3 , 1513-1524 , 2011.
    [2] Zhigang Zou ., et al ., Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst , Nature , 414 , 625-627 , 2001.
    [3]呂宗昕,圖解奈米科技與光觸媒,商周出版,2003.
    [4]工研院工業材料研究所(2001) , 2001材料奈米技術專刊,台北:經濟部技術處.
    [5]楊仲準,量子尺寸效應於奈米超導金屬之研究,物理雙刊,119-125,2010.
    [6]蘇品書,超微粒子材料技術,復漢出版,1989.
    [7]史宗淮,微粉製程技術簡介,化工,42(6),28(1995).
    [8] Ioannis Rigopoulos ., et al ., Effect of ball milling on the carbon sequestration efficiency of serpentinized peridotites , Minerals Engineering , 120 , 66-74 , 2018.
    [9] Barbara Lasio.,et al.,Non-monotonic variation of the grain size in Cu nanopowders subjected to ball milling , Materials Letters , 212 , 171-173 , 2018 .
    [10]郭清癸,黃俊傑,牟中原,金屬奈米粒子的製造,物理雙月刊(甘三卷六期),614-624,2001.
    [11] Yunji Lee ., et al ., Ostwald ripening and control of Ag ion reduction degree by ammonium hydroxide in alcohol reduction process , Journal of Industrial and Engineering Chemistry , 21 , 768–771 , 2015 .
    [12] Fu Yang ., et al ., Facilely self-reduced generation of Ag nanowires in the confined reductive siliceous nanopores and its catalytic reduction property , Journal of Alloys and Compounds , 719 , 30-41 , 2017.
    [13] Elena Husanu ., et al ., Synthesis of colloidal Ag nanoparticles with citrate based ionic liquids as reducing and capping agents , Colloids and Surfaces A: Physicochemical and Engineering Aspects , 538 , 506–512 , 2018.
    [14] A.G. El-Shamy ., et al., Promising method for preparation the PVA/Ag nanocomposite and Ag nano-rods , Journal of Alloys and Compounds 744 , 701-711 , 2018.
    [15] Ummul K. Fatema ., et al ., Silver/poly(vinyl alcohol) nanocomposite film prepared using water in oil microemulsion for antibacterial applications , Journal of Colloid and Interface Science , 514 , 648–655 , 2018 .
    [16] Ying Wei ., et al ., Hydrothermal synthesis of Ag modified ZnO nanorods and their enhanced ethanol-sensing properties,Materials Science in Semiconductor Processing , 75 , 327–333 , 2018 .
    [17] L.F. Lopes ., et al ., Silver-controlled evolution of morphological, structural, and optical properties of three-dimensional hierarchical WO3 structures synthesized from hydrothermal method,Journal of Alloys and Compounds , 736 , 143-151 , 2018.
    [18] Zhijun Ma ., et al ., Sol-gel preparation of Ag-silica nanocomposite with high electrical conductivity , Applied Surface Science , 436 , 732–738 , 2018 .
    [19] Yuncheng Cai ., et al ., Sol-gel preparation of Ag-doped MgO nanoparticles with high efficiency for bacterial inactivation , Ceramics International , 43 , 1066–1072 , 2017 .
    [20] Naoki Toshima and Tetsu Yonezawa,Bimetallic nanoparticles-novel materials for chemical and physical applications , New J.Chem , 22 , 1179-1201 , 1998.
    [21] K. Lance Kelly.,et al.,The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , J. Phys. Chem. B ,107, 668-677 , 2003.
    [22] Amanda J .Haes ., et al ., A Nanoscale Optical Biosensor: Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles , J. Am. Chem. Soc, 124, 10596–10604 , 2002.
    [23] Ivan H. El-Sayed ., et al ., Selective Laser Photo-Thermal Therapy of Epithelial Carcinoma Using Anti-EGFR Antibody Conjugated Gold Nanoparticles , 239 , 129–135 , 2006 .
    [24] Kalyani Prusty ., et al ., Nano silver decorated polyacrylamide/dextran nanohydrogels hybrid composites for drug delivery applications , Materials Science & Engineering : C , 85 , 130–141 , 2018 .
    [25] Vivek Ahluwalia .,et al.,Nano silver particle synthesis using Swertia paniculata herbal extract and its antimicrobial activity , Microbial Pathogenesis , 114 , 402–408 , 2018.
    [26] Xiaolong Deng ., et al ., Antibacterial activity of nano-silver non-woven fabric prepared by atmospheric pressure plasma deposition , Materials Letters , 149 , 95–99 , 2015.
    [27] Sirsendu Bhowmick, Veena Koul,Assessment of PVA/silver nanocomposite hydrogel patch as antimicrobial dressing scaffold: Synthesis, characterization and biological evaluation ,Materials Science and Engineering C , 59 , 109–119 , 2016.
    [28] Bitao Lu ., et al ., In situ reduction of silver nanoparticles by chitosan-l-glutamic acid/hyaluronic acid: Enhancing antimicrobial and wound-healing activity , Carbohydrate Polymers , 173 , 556–565 , 2017.
    [29] Monika Furko ., et al ., Development and characterization of silver and zinc doped bioceramic layer on metallic implant materials for orthopedic application , Ceramics International , 42 , 4924–4931 , 2016.
    [30]呂晃志,揭開抗菌、防腐的神奇面紗-奈米銀,逢甲大學奈米科技研究中心, 2007
    [31] Benjamin Wiley ., et al ., Shape-Controlled Synthesis of Metal Nanostructures : The Case of Silver , Chem.Eur.J , 11,454-463 , 2005.
    [32] H.Reza Ghorbani ., et al ., Biological and Non-biological Methods for Silver Nanoparticles Synthesis , Chem. Biochem. Eng. Q , 25 , 317–326 2011 .
    [33] Sangiliyandi Gurunathan ., et al ., Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli , Colloids and Surfaces B: Biointerfaces , 74 , 328–335 , 2009.
    [34] Susie Eustis ., et al ., Why gold nanoparticles are more precious than pretty gold:Noble metal surface plasmon resonance and its enhancement of the radiative and nanradiative properties of nanocrystals of different shapes , Chemical Society Reviews , 35 , 209-217 , 2006.
    [35] Sarina Sarina ., et al ., Photocatalysis on supported gold and silver nanoparticles under ultraviolet and visible light irradiation,Green Chemistry , 15, 1814-1833 , 2013.
    [36] Zannanza, 庫古玻璃杯:古羅馬領先世界1700年的玻璃工藝,聚言時報,2016.
    http://polymerhk.com/articles/2016/04/09/30163/
    [37]世界上最美的彩色玻璃窗,每日頭條
    https://kknews.cc/travel/5lel2.html
    [38] Changhua An ., et al ., Facile synthesis of sunlight-driven AgCl:Ag plasmonic nanophotocatalyst , Advanced materials , 22 , 2570-2574 , 2010.
    [39] Liang Yinghua ., et al ., Facile Synthesis of Ag@AgCl Plasmonic Photocatalyst and Its Photocatalytic Degradation under Visible Light , Rare Metal Materials and Engineering , 44, 1088-1093 , 2015.
    [40] Qionglian Yang ., et al ., Synthesis and enhanced photocatalytic performance of Ag/AgCl/TiO2 nanocomposites prepared by ion exchange method , Journal of Materiomics , 2018.
    [41] Xinhuan Wang ., et al ., GO- AgCl / Ag nanocomposites with enhanced visible light- driven catalytic properties for antibacterial and biofilm- disrupting applications , Colloids and Surface B:Biointerfaces , 162 , 296-305 , 2018.
    [42] Chun Hu ., et al ., Ag/AgBr/TiO2 Visible Light Photocatalyst for Destruction of Azodyes and Bacteria , J. Phys. Chem. B , 110, 4066-4072 , 2006.
    [43] Xiuzhen Lin ., et al ., Synthesis of AgCl/Ag/AgCl core-shell microstructures with enhanced photocatalytic activity under sunlight irradiation , Journal of Environmental Chemical Engineering , 4 , 4021–4028 , 2016.
    [44]Peng Wang ., et al ., Ag@AgCl: A Highly Efficient and Stable Photocatalyst Active underVisible Ligh ,Angewantde Chemie. Int. Ed , 47 , 7931-7933 , 2008.
    [45]Chun Hu ., et al ., Plasmon-Induced Photodegradation of Toxic Pollutants with Ag-AgI/Al2O3 under Visible-Light Irradiation , J. AM. CHEM. SOC , 132 , 857–862 , 2010.
    [46]Newport, Research Arc Lamp Housing, 50-500 W, F/1.5 Plano-Convex, 1.5 Inch Flange
    https://www.newport.com/p/66901
    [47]Bowen Ma ., et al ., Highly stable and efficient Ag/AgCl core–shell sphere: Controllable synthesis, characterization, and photocatalytic application , Applied Catalysis B: Environmental , 130-131 , 257-263 , 2013.
    [48]Yuanguo Xu ., et al ., Ionic liquid oxidation synthesis of Ag@AgCl core–shell structure for photocatalytic application under visible-light irradiation , Colloids and Surfaces A: Physicochemical and Engineering Aspects , 416, 80-85 , 2013.

    無法下載圖示 校內:2023-07-13公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE