| 研究生: |
張鈞翔 Chang, Chun-Hsiang |
|---|---|
| 論文名稱: |
全光纖被動鎖模雷射之研究 Study on all-fiber passively mode-locked lasers |
| 指導教授: |
蔡宗祐
Tsai, Tzong-Yow |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 全光纖雷射系統 、被動鎖模雷射 、自鎖模雷射 、非線性偏振旋轉 、增益切換鎖模 |
| 外文關鍵詞: | All-fiber laser system, Passively mode-locked lasers, Self-mode-locked lasers, Nonlinear polarization rotation, Gain-switched mode-locking |
| 相關次數: | 點閱:119 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們以全光纖被動鎖模雷射為基礎來探討鎖模的相關原理與知識,也探究了鎖模雷射的量測儀器,如自相關儀。此外,我們設計與實驗了兩種鎖模雷射的架構。在第一個架構中,我們利用非線性偏振旋轉技術以製作偏振疊加波鎖模雷射;在第二個架構中,摻銩光纖透過增益切換來產生相似於Q切換鎖模的脈衝封包,此增益切換產生脈衝封包的現象,我們稱之為增益切換鎖模。我們應用在此雷射的概念是由模態場面積不匹配產生腔內聚焦,並利用高能量脈衝泵浦摻銩光纖而引發鎖模,故我們稱此雷射為摻銩光纖自鎖模雷射。
In this thesis, we adopted the basis of all-fiber passively mode-locked lasers to study the related principle and knowledge of mode-locking. The measuring instruments of mode-locked lasers, such as autocorrelator, are also discussed. Moreover, we designed and experimented on two structures of mode-locked laser. In the first structure, we used nonlinear polarization rotation technique to create a polarization additive-pulse mode-locked laser. In the second structure, the thulium-doped fiber through gain-switching to produce pulse envelope is similar to Q-switched mode-locking, so we named the phenomenon as gain-switched mode-locking. The concepts we applied in the laser are to induce intracavity focusing by mode-field-area mismatch and to use the pulses of high energy to pump thulium-doped fiber. As a result of the two concepts above, the laser is self-mode-locked. Therefore we called it thulium-doped fiber self-mode-locked laser.
第1章 緒論
[1] A.M. Weiner (2009), Ultrafast Optics( ed.), New Jersey: John Wiley & Sons, pp.1-4.
[2] Ursula Keller (2003), “Recent developments in compact ultrafast lasers,” Nature, 424 (6950) pp.831-838.
[3] R.L. Fork, B.I. Greene & C.V. Shank (1981), “GENERATION OFOPTICAL PULSES SHORTER THAN 0.1 PSEC BY COLLIDING PULSE MODE-LOCKING,” Applied Physics Letters, 38 (9) pp.671-672.
[4] J.A. Valdmanis, R.L. Fork & J.P. Gordon (1985), “GENERATION OF OPTICAL PULSES AS SHORT AS 27 FEMTOSECONDS DIRECTLY FROM A LASER BALANCING SELF-PHASE MODULATION, GROUP-VELOCITY DISPERSION, SATURABLE ABSORPTION, AND SATURABLE GAIN,” Optics Letters, 10 (3) pp.131-133.
[5] P.F. Moulton (1986), “SPECTROSCOPIC AND LASER CHARACTERISTICS OF TI-AL2O3,” Journal of The Optical Society of America B-Optical Physics, 3 (1) pp.125-133.
[6] D.H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow & T. Tschudi (1999), “Semiconductor saturable-absorber mirror-assisted Kerr-lens mode-locked Ti : sapphire laser producing pulses in the two-cycle regime,” Optics Letters, 24 (9) pp.631-633.
[7] U. Morgner, F.X. Kartner, S.H. Cho, Y. Chen, H.A. Haus, J.G. Fujimoto, E.P. Ippen, V. Scheuer, G. Angelow & T. Tschudi (1999), “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti : sapphire laser,” Optics Letters, 24 (6) pp.411-413.
[8] A. Chamorovskiy, Y. Chamorovskiy, I. Vorob'ev & O.G. Okhotnikov (2010), ‘‘95-Femtosecond Suspended Core Ytterbium Fiber Laser,’’ IEEE Photonics Technology Letters, 22 (17) pp.1321-1323.
[9] R. Herda, S. Kivisto, O.G. Okhotnikov, A.F. Kosolapov, A.E. Levchenko, S.L. Semjonov & E.M. Dianov (2008), ‘‘Environmentally stable mode-locked fiber laser with dispersion compensation by index-guided photonic crystal fiber,’’ IEEE Photonics Technology Letters, 20 (1-4) pp.217-219.
[10] B. Ortac, M. Ploetner, T. Schreiber, J. Limpert & A. Tunnermann (2007), ‘‘Experimental and numerical study of pulse dynamics in positive net-cavity dispersion mode-locked Yb-doped fiber lasers,’’ Optics Express, 15 (23) pp.15595-15602.
[11] X.L. Tian, M. Tang, P.P. Shum, Y.D. Gong, C.L. Lin, S.N. Fu & T.S. Zhang (2009), ‘‘High-energy laser pulse with a submegahertz repetition rate from a passively mode-locked fiber laser,’’ Optics Letters, 34 (9) pp.1432-1434.
[12] L. Orsila, R. Herda & O.G. Okhotnikov (2007), ‘‘Monolithic fiber mirror and photonic crystal technology for high repetition rate all-fiber soliton lasers,’’ IEEE Photonics Technology Letters, 19 (21-24) pp.2009-2011.
[13] X.M. Liu, J. Laegsgaard & D. Turchinovich (2010), ‘‘Self-stabilization of a mode-locked femtosecond fiber laser using a photonic bandgap fiber,’’ Optics Letters, 35 (7) pp.913-915.
[14] O. Katz & Y. Sintov (2008), ‘‘Strictly all-fiber picosecond ytterbium fiber laser utilizing chirped-fiber-Bragg-gratings for dispersion control,’’ Optics Letters, 281 (10) pp.2874-2878.
[15] R. Gumenyuk, C. Thur, S. Kivisto & O.G. Okhotnikov (2010), ‘‘Tapered Fiber Bragg Gratings for Dispersion Compensation in Mode-Locked Yb-Doped Fiber Laser,’’ IEEE Journal of Quantum Electronics, 46 (5) pp.769-773.
[16] C.M. Quyang, P. Shum, H.H. Wang, S.N. Fu, X.P. Cheng, J.H. Wang & X.L. Tian (2011), ‘‘Wavelength-Tunable High-Energy All-Normal-Dispersion Yb-Doped Mode-Locked All-Fiber Laser with a HiBi Fiber Sagnac Loop Filter,’’ IEEE Journal of Quantum Electronics, 47 (2) pp.198-203.
[17] M. Zhang, E.J.R. Kelleher, E.D. Obraztsova, S.V. Popov & J.R. Taylor (2011), ‘‘Nanosecond Pulse Generation in Lumped Normally Dispersive All-Fiber Mode-Locked Laser,’’ IEEE Photonics Technology Letters, 23 (19) pp.1379-1381.
[18] Y.S. Fedotov, S.M. Kobtsev, R.N. Arif, A.G. Rozhin, C. Mou & S.K. Turitsyn (2012), ‘‘Spectrum-, pulsewidth-, and wavelength-switchable all-fiber mode-locked Yb laser with fiber based birefringent filter,’’ Optics Express, 20 (16) pp.17797-17805.
[19] M.E.V. Pedersen, E.J.R. Kelleher, J.C. Travers, Z. Sun, T. Hasan, A.C. Ferrari, S.V. Popov & J.R. Taylor (2012), ‘‘Stable Gain-Guided Soliton Propagation in a Polarized Yb-Doped Mode-Locked Fiber Laser,’’ IEEE Photonics Journal, 4 (3) pp.1058-1064.
[20] K. Ozgoren & F.O. Ilday (2010), ‘‘All-fiber all-normal dispersion laser with a fiber-based Lyot filter,’’ Optics Letters, 35 (8) pp.1296-1298.
[21] X.H. Li, Y.S. Wang, W. Zhao, X.L. Liu, Y.G. Wang, Y.H. Tsang, W. Zhang, X.H. Hu, Z. Yang, C.X. Gao, C. Li & D.Y. Shen (2012), ‘‘All-Fiber Dissipative Solitons Evolution in a Compact Passively Yb-Doped Mode-Locked Fiber Laser,’’ Journal of Lightwave Technology, 30 (15) pp.2502-2507.
[22] X.L. Liu, H.S. Wang, Z.J. Yan, Y.S. Wang, W. Zhao, W. Zhang, L. Zhang, Z. Yang, X.H. Hu, X.H. Li, D.Y. Shen, C. Li & G.D. Chen (2012), ‘‘All-fiber normal-dispersion single-polarization passively mode-locked laser based on a 45 degrees-tilted fiber grating,’’ Journal of Lightwave Technology, 20 (17) pp.19000-19005.
[23] M. Schultz, H. Karow, O. Prochnow, D. Wandt, U. Morgner & D. Kracht (2008), ‘‘All-fiber ytterbium femtosecond laser without dispersion compensation,’’ Optics Express, 16 (24) pp.19562-19567.
[24] A.V. Ivanenko, S.M. Kobtsev & S.V. Kukarin (2010), ‘‘Femtosecond Ring All-Fiber Yb Laser with Combined Wavelength-Division Multiplexer-Isolator,’’ Laser Physics, 20 (2) pp.344-346.
[25] P.Z. Zhang, W. Fan, X.C. Wang & Z.Q. Lin (2010), ‘‘Generation of 8.5-nJ pulse from all-fiber dispersion compensation-free Yb-doped laser,’’ Chinese Optics Letters, 8 (8) pp.768-770.
[26] C.H. Tu, W.G. Guo, Y.N. Li, S.G. Zhang & F.Y. Lu (2007), ‘‘Stable multiwavelength and passively mode-locked Yb-doped fiber laser based on nonlinear polarization rotation,’’ Optics Communications, 280 (2) pp.448-492.
[27] D. Mortag, D. Wandt, U. Morgner, D. Kracht & J. Neumann (2011), ‘‘Sub-80-fs pulses from an all-fiber-integrated dissipative-soliton laser at 1 μm,’’ Optics Express, 19 (2) pp.546-551.
[28] Z.X. Zhang, Z.W. Xu & L. Zhang (2012), ‘‘Tunable and switchable dual-wavelength dissipative soliton generation in an all-normal-dispersion Yb-doped fiber laser with birefringence fiber filter,’’ Optics Express, 20 (24) pp.26736-26742.
[29] C. Aguergaray, N.G.R Broderick, M. Erkintalo, J.S.Y. Chen & V. Kruglov (2012), ‘‘Mode-locked femtosecond all-normal all-PM Yb-doped fiber laser using a nonlinear amplifying loop mirror,’’ Optics Express, 20 (10) pp.10545-10551.
[30] A.V. Avdokhin, S.V. Popov & J.R. Taylor (2003), ‘‘Totally fiber integrated, figure-of-eight, femtosecond source at 1065 nm,’’ Optics Express, 11 (3) pp.265-269.
[31] S. Kivisto, R. Gumenyuk, J. Puustinen, M. Guina, E.M. Dianov & O.G. Okhotnikov (2009), ‘‘Mode-Locked Bi-Doped All-Fiber Laser With Chirped Fiber Bragg Grating,’’ IEEE Photonics Technology Letters, 21 (9-12) pp.599-601.
[32] E.J.R. Kelleher, J.C. Travers, Z. Sun, A.C. Ferrari, K.M. Golant, S.V. Popov & J.R. Taylor (2010), ‘‘Bismuth fiber integrated laser mode-locked by carbon nanotubes,’’ Laser Physics Letters, 7 (11) pp.790-794.
[33] A. -P. Luo, Z. -C. Luo, W. -C. Xu, V.V. Dvoyrin, V.M. Mashinsky & E.M. Dianov (2011), ‘‘Tunable and switchable dual-wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation,’’ Laser Physics Letters, 8 (8) pp.601-605.
[34] M. Zirngibl, L.W. Stulz, J. Stone, J. Hugi, D. Digiovanni & P.B. Hansen (1991), ‘‘1.2PS PULSES FROM PASSIVELY MODE-LOCKED LASER DIODE PUMPED ER-DOPED FIBER RING LASER,’’ Electronics Letters, 27 (19) pp.1734-1735.
[35] C. Mou, S. Sergeyev, A. Rozhin & S. Turistyn Zhang (2011), ‘‘All-fiber polarization locked vector soliton laser using carbon nanotubes,’’ Optics Letters, 36 (19) pp.3831-3833.
[36] N. Nishizawa, Y. Seno, K. Sumimura, Y. Sakakibara, E. Itoga, H. Kataura & K. Itoh (2008), ‘‘All-polarization-maintaining Er-doped ultrashort-pulse fiber laser using carbon nanotube saturable absorber,’’ Optics Express, 16 (13) pp.9429-9435.
[37] K. Kieu & M. Mansuripur (2007), ‘‘Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite,’’ Optics Letters, 32 (15) pp.2242-2244.
[38] S.Y. Choi, F. Rotermund, H. Jung, K. oh & D. -I. Yeom (2009), ‘‘Femtosecond mode-locked fiber laser employing a hollow optical fiber filled with carbon nanotube dispersion as saturable absorber,’’ Optics Letters, 17 (24) pp.21788-21793.
[39] J.Z. Wang, Z.Q. Luo, M. Zhou, C.C. Ye, H.Y. Fu, Z.P. Cai, H.H. Cheng, H.Y. Xu & W. Qi (2012), ‘‘Evanescent-Light Deposition of Graphene Onto Tapered Fibers for Passive Q-Switch and Mode-Locker,’’ IEEE Photonics Journal, 4 (5) pp.1295-1305.
[40] Y. -W. Song, S. -Y. Jang, W. -S. Han & M. -K. Bae (2010), ‘‘Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,’’ Applied Physics Letters, 96 (5).
[41] J. Xu, J. Liu, S.D. Wu, Q. -H. Yang & P. Wang (2012), ‘‘Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,’’ Optics Express, 20 (14) pp.15474-15480.
[42] A. Ruehl, H. Hundertmark, D. Wandt, C. Fallnich & D. Kracht (2005), ‘‘0.7W all-fiber Erbium oscillator generating 64 fs wave breaking-free pulses,’’ Optics Express, 13 (16) pp.6305-6309.
[43] C.B. Mou, H. Wang, B.G. Bale, K.M. Zhou, L. Zhang & I. Bennion (2010), ‘‘All-fiber passively mode-locked femtosecond laser using a 45 degrees-tilted fiber grating polarization element,’’ Optics Express, 18 (18) pp.18906-18911.
[44] Z.X. Zhang, B. Oktem & F.O. Ilday (2010), ‘‘All-fiber-integrated soliton-similariton laser with in-line fiber filter,’’ Optics Letters, 37 (17) pp.3489-3491.
[45] J.S. Peng, L. Zhan, Z.C. Gu, K. Qian, X. Hu, S.Y. Luo & Q.S. Shen (2012), ‘‘Direct Generation of 4.6-nJ 78.9-fs Dissipative Solitons in an All-Fiber Net-Normal-Dispersion Er-Doped Laser,’’ IEEE Photonics Technology Letters, 24 (2) pp.98-100.
[46] C.M. Quyang, P.P. Shum, K. Wu, J.H. Wong, X. Wu, H.Q. Lam & S. Aditya (2012), ‘‘Dissipative Soliton (12 nJ) From an All-Fiber Passively Mode-Locked Laser With Large Normal Dispersion,’’ IEEE Photonics Journal, 3 (5) pp.881-887.
[47] J. Chen, D. -F. Jia, Y. -C. Wu, C. -L. Wang, Z. -Y. Wang & T. -X. Yang (2011), ‘‘Passively Mode-Locked Fiber Laser with a Sub-Megahertz Repetition Rate,’’ Chinese Physics Letters, 28 (11).
[48] Z.C. Luo, A.P. Luo, W.C. Xu, C.X. Song, Y.X. Gao & W.C. Chen (2009), ‘‘Sideband controllable soliton all-fiber ring laser passively mode-locked by nonlinear polarization rotation,’’ Laser Physics Letters, 6 (8) pp.582-585.
[49] G. -R. Lin, Y. -T. Lin & C. -K. Lee (2007), ‘‘Simultaneous pulse amplification and compression in all-fiber-integrated pre-chirped large-mode-area Er-doped fiber amplifier,’’ Optics Express, 15 (6) pp.2993-2999.
[50] N. Russo & R. Duchowicz (2010), ‘‘High frequency pulse trains from a self-starting additive pulse mode-locked all-fiber laser,’’ Optics Communications, 283 (1) pp.113-117.
[51] P. Polynkin, A. Polynkin, D. Panasenko, N. Peyghambarian & J.V. Moloney (2006), ‘‘All-fiber picosecond laser system at 1.5 mu m based on amplification in short and heavily doped phosphate-glass fiber,’’ IEEE Photonics Technology Letters, 18 (21-24) pp.2194-2196.
[52] A. Polynkin, P. Polynkin, D. Panasenko, M. Mansuripur, J. Moloney & N. Peyghambarian (2006), ‘‘Short-cavity, passively modelocked fibre laser oscillator at 1.5 mu m with 550 MHz repetition rate and high average power,’’ Electronics Letters, 42 (3) pp.157-159.
[53] A. Martinez & S. Yamashita (2011), ‘‘Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,’’ Optics Express, 19 (7) pp.6155-6163.
[54] A. Martinez & S. Yamashita (2012), ‘‘10 GHz fundamental mode fiber laser using a graphene saturable absorber,’’ Applied Physics Letters, 101 (4).
[55] X.M. Wei, S.H. Xu, H.C. Huang, M.Y. Peng & Z.M. Yang (2011), ‘‘Compact all-fiber ring femtosecond laser with high fundamental repetition rate,’’ Optics Express, 20 (22) pp.24607-24613.
[56] D. Panasenko, P. Polynkin, A. Polynkin, J.V. Moloney, M. Mansuripur & N. Peyghambarian (2006), ‘‘Er-Yb femtosecond ring fiber oscillator with 1.1-W average power and GHz repetition rates,’’ IEEE Photonics Technology Letters, 18 (5-8) pp.853-855.
[57] Z. -C. Luo, W. -C. Xu, C. -X. Song, A. -P. Luo, Y. -X. Gao, S. -H. Xu, Z. -M. Yang & W. -C. Chen (2008), ‘‘Self-Starting Passively Mode-Locked Er3+/Yb3+ Codoped Phosphate Glass All-Fibre Ring Laser,’’ Chinese Physics Letters, 25 (12) pp.4280-4282.
[58] Q.A. Fang, K. Kieu & N. Peyghambarian (2010), ‘‘An All-Fiber 2-mu m Wavelength-Tunable Mode-Locked Laser,’’ IEEE Photonics Technology Letters, 22 (22) pp.1656-1658.
[59] M. Zhang, E.J.R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A.C. Ferrari, S.V. Popov & J.R. Taylor (2012), ‘‘Tm-doped fiber laser mode-locked by graphene-polymer composite,’’ Optics Express, 20 (22) pp.25077-25084.
[60] Q. Wang, T. Chen, B. Zhang, A.P. Heberle & K.P. Chen (2011), ‘‘All-fiber passively mode-locked thulium-doped fiber ring oscillator operated at solitary and noiselike modes,’’ Optics Letters, 36 (19) pp.3750-3752.
[61] M.A. Chernysheva, A.A. Krylov, P.G. Kryukov & E.M. Dianov (2012), ‘‘Nonlinear Amplifying Loop-Mirror-Based Mode-Locked Thulium-Doped Fiber Laser,’’ IEEE Photonics Technology Letters, 24 (14) pp.1254-1256.
[62] K. Kieu & F.W. Wise (2009), ‘‘Soliton Thulium-Doped Fiber Laser With Carbon Nanotube Saturable Absorber,’’ IEEE Photonics Technology Letters, 21 (1-4) pp.128-130.
[63] R. Kadel & B.R. Washburn (2012), ‘‘All-fiber passively mode-locked thulium/holmium laser with two center wavelengths,’’ Applied Optics, 51 (27) pp.6465-6470.
[64] A.M. Weiner (2009), Ultrafast Optics( ed.), New Jersey: John Wiley & Sons, pp.3-4.
第2章 原理
[1] See the website: http://www.rp-photonics.com/mode_locking.html
[2] A.M. Weiner (2009), Ultrafast Optics( ed.), New Jersey: John Wiley & Sons, p.13.
[3] E.P. Ippen (1994), “PRINCIPLES OF PASSIVE-MODE LOCKING,” Applied Physics B-Lasers and Optics, 58 (3) pp.159-170.
[4] A.M. Weiner (2009), Ultrafast Optics( ed.), New Jersey: John Wiley & Sons, p.34.
[5] H.A. Haus (1975), “THEORY OF MODE-LOCKING WITH A FAST SATURABLE ABSORBER,” Journal of Applied Physics, 46 (7) pp.3049-3058.
[6] H.A. Haus (1975), “THEORY OF MODE-LOCKING WITH A SLOW SATURABLE ABSORBER,” IEEE Journal of Quantum Electronics, 11 (9) pp.736-746.
[7] See the website:
http://www.rp-photonics.com/passive_mode_locking.html
[8] H.A. Haus, E.P. Ippen & K. Tamura (1994), ‘‘Additive-Pulse Modelocking in Fiber Lasers,’’ IEEE Journal of Quantum Electronics, 30 (1) pp.200-208.
[9] H.A. Haus, J.G. Fujimoto & E.P. Ippen (1992), ‘‘Analytic Theory of Additive Pulse and Kerr Lens Mode Locking,’’ IEEE Journal of Quantum Electronics, 28 (10) pp.2086-2096.
[10] L.E. Nelson, D.J. Jones, K. Tamura, H.A. Haus & E.P. Ippen (1997), ‘‘Ultrashort-pulse fiber ring lasers,’’ Applied Physics B-Lasers and Optics, 65 (2) pp.277-294.
[11] M. Hofer, M.E. Fermann, F. Haberl, M.H. Ober & A.J. Schmidt (1991), ‘‘Mode locking with cross-phase and self-phase modulation,’’ Optics Letters, 16 (7) pp.502-504.
[12] I.N. Duling (1991), ‘‘ALL-FIBER RING SOLITON LASER MODE-LOCKED WITH A NONLINEAR MIRROR,’’ Optics Letters, 16 (8) pp.539-541.
[13] W.J. Lai, P. Shum & L.N. Binh (1991), ‘‘NOLM-NALM fiber ring laser,’’ IEEE Journal of Quantum Electronics, 41 (7) pp.986-993.
[14] I.N. Duling, C.J. Chen, P.K.A. Wai & C.R. Menyuk (1994), ‘‘OPERATION OF A NONLINEAR LOOP MIRROR IN A LASER CAVITY,’’ IEEE Journal of Quantum Electronics, 30 (1) pp.194-199.
[15] J. Mark, L.Y. Liu, K.L. Hall, H.A. Haus & E.P. Ippen (1989), ‘‘FEMTOSECOND PULSE GENERATION IN A LASER WITH A NONLINEAR EXTERNAL RESONATOR,’’ Optics Letters, 14 (1) pp.48-50.
[16] D.W. Huang, G.C. Lin & C.C. Yang (1999), ‘‘Fiber-grating-based self-matched additive-pulse mode-locked fiber lasers,’’ IEEE Journal of Quantum Electronics, 35 (2) pp.138-146.
[17] See the website:
http://www.rp-photonics.com/additive_pulse_mode_locking.html
[18] See the website: http://en.wikipedia.org/wiki/Optical_autocorrelation
[19] Femtochrome Research Inc., FR-103XL Autocorrelator Instruction Manual.
[20] Z.A. Yasa & N.M. Amer (1981) , ‘‘A Rapid-Scanning Autocorrelation Scheme for Continuous Monitoring of Picosecond Laser Pulses,’’ Optics Communications, 36 (5) pp.406 -408
第3章 偏振疊加波鎖模雷射
[1] J. Reichert, R. Holzwarth, T. Udem & T.W. Hansch (1999), “Measuring the frequency of light with mode-locked lasers,” Optics Communications, 172 (1-6) pp.59-68.
[2] T. Udem, R. Holzwarth, T.W. Hansch (2002), “Optical frequency metrology,” Nature, 416 (6877) pp.233-237.
[3] P.F. Curley, A.I. Ferguson, J.G. White & W.B. Amos (1992), “APPLICATION OF A FEMTOSECOND SELF-SUSTAINING MODE-LOCKED TI-SAPPHIRE LASER TO THE FIELD OF LASER SCANNING CONFOCAL MICROSCOPY,” Optical and Quantum Electronics, 24 (8) pp.851-859.
[4] U. Keller, D.A.B. Miller, G.D. Boyd, T.H. Chiu, J.F. Ferguson & M.T. Asom (1992), “SOLID-STATE LOW-LOSS INTRACAVITY SATURABLE ABSORBER FOR ND-YLF LASERS - AN ANTIRESONANT SEMICONDUCTOR FABRY-PEROT SATURABLE ABSORBER,” Optics Letters, 17 (7) pp.505-507.
[5] S. Tsuda, W.H. Knox, E.A. Desouza, W.Y. Jan & J.E. Cunningham (1995), “LOW-LOSS INTRACAVITY ALAS/ALGAAS SATURABLE BRAGG REFLECTOR FOR FEMTOSECOND MODE-LOCKING IN SOLID-STATE LASERS,” Optics Letters, 20 (12) pp.1406-1408.
[6] E.U. Rafailov, S.J. White, A.A. Lagatsky, A. Miller, W. Sibbett, D.A. Livshits, A.E. Zhukov & V.M. Ustinov (2004), “Fast quantum-dot saturable absorber for passive mode-locking of solid-state lasers,” IEEE Photonics Technology Letters, 16 (11) pp.2439-2441.
[7] U. Keller, K.J. Weingarten, F.X. Kartner, D. Kopf, B. Braun, I.D. Jung, R. Fluck, C. Honninger, N. Matuschek & J.A. derAu (1996), “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE Journal of Selected Topics in Quantum Electronics, 2 (3) pp.435-453.
[8] B. Braun, K.J. Weingarten, F.X. Kartner & U. Keller (1995), “CONTINUOUS-WAVE MODE-LOCKED SOLID-STATE LASERS WITH ENHANCED SPATIAL HOLE-BURNING,” Applied Physics B, 61 (5) pp.429-437.
第4章 摻銩光纖自鎖模雷射
[1] D.C. Hanna, I.M. Jauncey, R.M. Percival, I.R. Perry, R.G. Smart, P.J. Suni, J.E. Townsend & A.C. Tropper (1988), ‘‘CONTINUOUS-WAVE OSCILLATION OF A MONOMODE THULIUM-DOPED FIBER LASER,’’ Electronics Letters, 24 (19) pp.1222-1223.
[2] D.C. Hanna, R.M. Percival, R.G. Smart & A.C. Tropper (1990), ‘‘EFFICIENT AND TUNABLE OPERATION OF A TM-DOPED FIBER LASER,’’ Optics communications, 75 (3-4) pp.283-286.
[3] W.L. Barnes & J.E. Townsend (1990), ‘‘HIGHLY TUNABLE AND EFFICIENT DIODE PUMPED OPERATION OF TM-3+ DOPED FIBER LASERS,’’ Electronics Letters, 26 (11) pp.746-747.
[4] J.F. Wu, Z. Yao, J. Zong & S.B. Jiang (2007), ‘‘Highly efficient high-power thulium-doped germanate glass fiber laser,’’ Optics Letters, 32 (6) pp.638-640.
[5] S.D. Jackson, A. Sabella & D.G. Lancaster (2007), ‘‘Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 mu m,’’ IEEE Journal of Selected Topics in Quantum, 13 (3) pp.567-572.
[6] G.D. Goodno, L.D. Book & J.E. Rothenberg (2009), ‘‘Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier,’’ Optics Letters, 34 (8) pp.1204-1206.
[7] Q.A. Fang, K. Kieu & N. Peyghambarian (2010), ‘‘An All-Fiber 2-mu m Wavelength-Tunable Mode-Locked Laser,’’ IEEE Photonics Technology Letters, 22 (22) pp.1656-1658.
[8] M. Zhang, E.J.R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A.C. Ferrari, S.V. Popov & J.R. Taylor (2012), ‘‘Tm-doped fiber laser mode-locked by graphene-polymer composite,’’ Optics Express, 20 (22) pp.25077-25084.
[9] Q. Wang, T. Chen, B. Zhang, A.P. Heberle & K.P. Chen (2011), ‘‘All-fiber passively mode-locked thulium-doped fiber ring oscillator operated at solitary and noiselike modes,’’ Optics Letters, 36 (19) pp.3750-3752.
[10] M.A. Chernysheva, A.A. Krylov, P.G. Kryukov & E.M. Dianov (2012), ‘‘Nonlinear Amplifying Loop-Mirror-Based Mode-Locked Thulium-Doped Fiber Laser,’’ IEEE Photonics Technology Letters, 24 (14) pp.1254-1256.
[11] Y.F. Chen & S.W. Tsai (2001), ‘‘Simultaneous Q-switching and mode-locking in a diode-pumped Nd : YVO4-Cr4+: YAG laser,’’ IEEE Journal of Quantum Electronics, 37 (4) pp.580-586.
[12] J. -H. Lin, H. -R. Chen, H. -H. Hsu, M. -D. Wei, K. -H. Lin & W. -F. Hsieh (2008), ‘‘Stable Q-switched mode-locked Nd3+:LuVO4 laser by Cr4+:YAG crystal,’’ Optics Express, 16 (21) pp.16538-16545.
[13] T. -Y. Tsai, Z. -C. Lee, H. -X. Tsao & S. -T. Lin (2012), ‘‘Lensless intracavity focusing in a passively Q-switched all-fiber laser using the mode-field-area mismatch,’’ Optics Letters, 37 (13) pp.2610-2612.
[14] G. Zhang, S.Z. Zhao, G.Q. Li, D.C. Li, K.J. Yang, K. Cheng & Y. Zhang (2010), ‘‘Stable Q-switched and mode-locked Nd:GdVO4/KTP green laser with dual-loss-modulation,’’ Applied Optics, 49 (24) pp.4524-4530.
[15] J. -H. Lin, K. -H. Lin, C. -C. Hsu, W.H. Yang & W. -F. Hsieh (2007), ‘‘Supercontinuum generation in a microstructured optical fiber by picosecond self Q-switched mode-locked Nd : GdVO4 laser,’’ Laser Physics Letters, 4 (6) pp.413-417.
[16] T. -Y. Tsai, Y. -C. Fang & S. -H Hung (2010), ‘‘Passively Q-switched erbium all-fiber lasers by use of thulium-doped saturable-absorber fibers,’’ Optics Express, 18 (10) pp.10049-10054.
[17] A.S. Kurkov, Ya. E. Sadovnikova, A.V. Marakulin & E.M. Sholokhov (2010), ‘‘All fiber Er-Tm Q-switched laser,’’ Laser Physics Letters, 7 (11) pp.795-797.
[18] S.D. Agger & J.H. Povlsen (2006), ‘‘Emission and absorption cross section of thulium doped silica fibers,’’ Optics Express, 14 (1) pp.50-57.
第5章 結論
[1] J. Fekete, A. Cserteg & R. Szipocs (2009) , ‘‘All-fiber, all-normal dispersion ytterbium ring oscillator,’’ Laser Physics Letters, 6 (1) pp.49-53.
[2] N.S. Shahabuddin, H. Mohamad, M.A. Mahdi, Z. Yusoff, H. Ahmad & S.W. Harun (2012) , ‘‘Passively mode-locked soliton fiber laser using a combination of saturable absorber and nonlinear polarization rotation technique,’’ Microwave and Optical Technology Letters, 54 (6) pp.1430-1432.
[3] K. -H. Lin, J. -H. Lin & C. -C. Chen (2010) , ‘‘Switchable mode-locking states in an all-fiber all-normal-dispersion ytterbium-doped laser,’’ Laser Physics, 20 (11) pp.1984-1989.