簡易檢索 / 詳目顯示

研究生: 王庭雍
Wang, Ting-Yung
論文名稱: 積層製造Ti-6Al-4V快速凝固合金之熱力學分析與微結構及機械性質鑑定
Thermodynamic analyses and microstructure and mechanical property characterization of rapid solidified Ti-6Al-4V alloys by additive manufacturing
指導教授: 林士剛
Lin, Shih-Kang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 91
中文關鍵詞: 積層製造Ti-6Al-4V熱處理微結構硬度
外文關鍵詞: Additive manufacturing, Ti-6Al-4V, Heat treatment, Microstructure, Hardness
相關次數: 點閱:52下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,俗稱3D列印的積層製造技術日益成熟且普及,其具有客製化與複雜三維度結構製造的優勢,被認為是第三次工業革命的關鍵技術,也因此受到航太與生物醫學領域越來越多的關注,其製造方式有別於傳統的「減法式製造」而是採用「加法式製造」,並結合電腦輔助設計軟體繪製3D模型,再經由切層軟體將工件的3D模型解構為一層一層的幾何形狀之2.5D平面,以層層堆疊或燒熔的方式,將原材料製造成立體物品,此方法降低了加工過程中以切削或刮除所帶來的額外加工與材料成本,而能夠有效減少材料的浪費,並提高材料利用率,而由於Ti-6Al-4V合金具有優異的比強度、抗腐蝕性及良好的生物相容性,已被廣泛應用於航太與生醫領域,作為渦輪葉片或金屬植入物來使用,因此Ti-6Al-4V合金在金屬積層製造技術中扮演一重要的角色。
    典型的金屬粉末熔融積層製造技術中,以加熱源可區分為選擇性雷射製造技術及電子束積層熔融製造技術,選擇性雷射製造技術為一相對成熟的製程,不僅選擇材料的彈性較大,製造精密度也較後者來的高,但具有真空環境與預熱機制的電子束積層熔融製造技術,在腔體潔淨度與工件殘留應力的控制上更具優勢。雖然積層製造技術帶來了傳統製造工法沒有辦法達到的高度,然而多樣的製程參數與條件,使其在成品工件的微結構與機械性質上更加困難,且過去多以經驗或直覺的製程參數設置,造成單一合金系統的製程開發需要大量的時間及成本。因此,需要了解特定製程條件與不同合金系統之微結構與機械性質關係,以加速商業化與產業應用。
    在本研究中,利用電弧熔融法製備如金屬積層製造之快速凝固Ti-6Al-4V合金,並以紅外線溫度計量測合金溫度變化歷程,來計算合金之冷卻速率,並結合熱力學計算方法來探討快速凝固中的相變化行為,同時也透過微結構與機械性質之分析,觀察冷卻速率與兩者之關係。其實驗結果可成功描述積層製造中極快之凝固速率,且針狀α^'厚度隨著冷卻速率升高而減小,同時伴隨著硬度的提高,而通過計算結果能夠合理的解釋Ti-6Al-4V合金的相變化過程。除了前端製程之研究外,本研究同時也將電子束積層熔融製程後的Ti-6Al-4V合金進行後續的熱處理,在熱處理溫度750-950 °C下退火一小時,接著以水冷淬火與空冷方式冷卻,進而探討熱處理條件對其微結構與機械性質之影響,擺脫過去僅透過熱等靜壓方式進行後續處理的熱處理發展限制。從實驗結果發現其prior β晶粒尺寸將不因熱處理條件不同而改變,且β相面積分率、片狀α/α'與棒狀β之厚度皆隨著熱處理溫度而成長,並有導致其硬度的降低,然而當熱處理溫度超過800 °C以上,施以淬火與空冷時,將分別形成α'與針狀α/α',進而造成其硬度的提高。

    The additive manufacturing (AM) technology used in metals processing involve rapid solidification and rapid cooling at small melting pool dimensions as well as multiple reheating and cooling cycles. A method for characterization of the microstructure formation in rapidly solidified alloys was developed and applied for Ti-6Al-4V alloy. Otherwise, the relation between microstructure and mechanical properties has been mainly limited to the as-fabricated condition for electron beam melting (EBM) of metal powder bed fusion additive manufacturing technology. In this work, we measured the relationship of cooling rate, microstructure and hardness of rapid solidified Ti-6Al-4V alloys. Also the influence of heat treatment on microstructure and mechanical property of Ti-6Al-4V alloys fabricated by the EBM technology. The microstructures of rapid solidified Ti-6Al-4V alloys consist of acicular α/α'. The thickness of acicular α/α' decrease with increasing hardness and cooling rate. Based on thermodynamic calculations the observed microstructure can be explained using the CALPHAD approach tacking into account the non-equilibrium condition. The effect of heat treatment on microstructure and mechanical property is discussed in terms of α and β phases. The results show that α lath and β rod grow with increasing annealing temperature which cause in a decrease in hardness. However, α' and acicular α/α' will form respectively when the annealing temperature exceeds 800 °C and cooled by water-quenching and air-cooling which result in an increase in hardness.

    摘要 ii Abstract iv 誌謝 xvii 目錄 xviii 圖目錄 xx 表目錄 xxv 第一章 前言 1 第二章 文獻回顧 3 2.1 Ti-6Al-4V合金 3 2.2 傳統鑄造與鍛造技術 6 2.2.1 鑄造與鍛造之Ti-6Al-4V合金 8 2.3 積層製造技術 10 2.3.1 選擇性雷射製造技術 12 2.3.2 電子束積層熔融製造技術 14 2.3.3 SLM與EBM製造之Ti-6Al-4V合金 18 2.4 積層製造鈦合金性質預測 22 2.5 積層製造Ti-6Al-4V合金熱處理 25 第三章 實驗方法與步驟 28 3.1 熱力學計算方法 28 3.2 EBM製程後熱處理Ti-6Al-4V合金製備 29 3.3 快速凝固Ti-6Al-4V合金製備 31 3.3.1 溫度量測與校正 33 3.4 微結構分析 38 3.5 維克氏硬度量測 39 第四章 結果與討論 41 4.1 EBM製造Ti-6Al-4V合金分析 41 4.2 熱力學計算方法 45 4.2.1 等值剖面圖 45 4.2.2 液相線投影圖及凝固曲線 47 4.3 快速凝固Ti-6Al-4V合金 49 4.3.1 合金尺寸與冷卻速率關係 49 4.3.2 冷卻速率對微結構之影響 57 4.3.3 冷卻速率對硬度之影響 63 4.4 EBM製程後熱處理Ti-6Al-4V合金 65 4.4.1.1 熱處理條件對微結構之影響 65 4.4.2 熱處理條件硬度之影響 80 第五章 結論 83 第六章 參考文獻 84

    [1] 林國權 and 蕭亞漩, "3D 列印材料應用與發展," 材料世界網. 上網日期: 2015 年, vol. 4, 2014.
    [2] S. L. Sing, J. An, W. Y. Yeong, and F. E. Wiria, "Laser and electron‐beam powder‐bed additive manufacturing of metallic implants: A review on processes, materials and designs," Journal of Orthopaedic Research, vol. 34, pp. 369-385, 2016.
    [3] W. E. Frazier, "Metal additive manufacturing: a review," Journal of Materials Engineering and Performance, vol. 23, pp. 1917-1928, 2014.
    [4] A. Bandyopadhyay, F. Espana, V. K. Balla, S. Bose, Y. Ohgami, and N. M. Davies, "Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants," Acta Biomater, vol. 6, pp. 1640-8, Apr 2010.
    [5] A. Fukuda, M. Takemoto, K. Tanaka, S. Fujibayashi, D. Pattanayak, T. Matsushita, et al., "Bone ingrowth into pores of lotus stem-type bioactive titanium implants fabricated using rapid prototyping technique," Bioceramics Development and Applications, vol. 1, 2011.
    [6] D. K. Pattanayak, A. Fukuda, T. Matsushita, M. Takemoto, S. Fujibayashi, K. Sasaki, et al., "Bioactive Ti metal analogous to human cancellous bone: fabrication by selective laser melting and chemical treatments," Acta Biomaterialia, vol. 7, pp. 1398-1406, 2011.
    [7] G. Welsch, R. Boyer, and E. Collings, Materials properties handbook: titanium alloys: ASM international, 1993.
    [8] X. Tan, Y. Kok, Y. J. Tan, M. Descoins, D. Mangelinck, S. B. Tor, et al., "Graded microstructure and mechanical properties of additive manufactured Ti–6Al–4V via electron beam melting," Acta Materialia, vol. 97, pp. 1-16, 2015.
    [9] M. Long and H. Rack, "Titanium alloys in total joint replacement—a materials science perspective," Biomaterials, vol. 19, pp. 1621-1639, 1998.
    [10] J. Davidson and F. Georgette, State of the art materials for orthopedic prosthetic devices: Society of Manufacturing Engineers, 1987.
    [11] I. Gibson, Advanced manufacturing technology for medical applications: reverse engineering, software conversion and rapid prototyping: John Wiley & Sons, 2006.
    [12] S. L. Sing, J. An, W. Y. Yeong, and F. E. Wiria, "Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs," J Orthop Res, vol. 34, pp. 369-85, Mar 2016.
    [13] D. Hara, Y. Nakashima, T. Sato, M. Hirata, M. Kanazawa, Y. Kohno, et al., "Bone bonding strength of diamond-structured porous titanium-alloy implants manufactured using the electron beam-melting technique," Materials Science and Engineering: C, vol. 59, pp. 1047-1052, 2016.
    [14] K. C. Mills, Recommended values of thermophysical properties for selected commercial alloys: Woodhead Publishing, 2002.
    [15] M. Jovanović, S. Tadić, S. Zec, Z. Mišković, and I. Bobić, "The effect of annealing temperatures and cooling rates on microstructure and mechanical properties of investment cast Ti–6Al–4V alloy," Materials & design, vol. 27, pp. 192-199, 2006.
    [16] L. E. Murr, S. A. Quinones, S. M. Gaytan, M. I. Lopez, A. Rodela, E. Y. Martinez, et al., "Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications," J Mech Behav Biomed Mater, vol. 2, pp. 20-32, Jan 2009.
    [17] "Standard Specification for Titanium-6Aluminum-4Vanadium Alloy Castings for Surgical Implants (UNS R56406)," ed.
    [18] D. Eylon, W. Barice, and F. Froes, "Microstructure modification of Ti-6 A 1-4 V castings," OVERCOMING MATERIAL BOUNDARIES., 1985, vol. 17, pp. 585-595, 1985.
    [19] R. Jaffee, "Progress in Metal Physics," ed: Pergamon Press London, 1958, p. 65.
    [20] D. L. Ruckle and P. P. Millan Jr, "Method for heat treating cast titanium articles to improve their mechanical properties," ed: Google Patents, 1986.
    [21] L. E. Murr, E. V. Esquivel, S. A. Quinones, S. M. Gaytan, M. I. Lopez, E. Y. Martinez, et al., "Microstructures and mechanical properties of electron beam-rapid manufactured Ti–6Al–4V biomedical prototypes compared to wrought Ti–6Al–4V," Materials Characterization, vol. 60, pp. 96-105, 2009.
    [22] C. K. Chua and K. F. Leong, 3D Printing and Additive Manufacturing: Principles and Applications (with Companion Media Pack) of Rapid Prototyping Fourth Edition: World Scientific Publishing Company, 2014.
    [23] 陳溪山, 周育賢, 侯彥羽, 楊智超, and 分享, "金屬粉末積層製造技術在航太領域之發展與機會 (上)."
    [24] N. Sudarmadji, J. Tan, K. Leong, C. Chua, and Y. Loh, "Investigation of the mechanical properties and porosity relationships in selective laser-sintered polyhedral for functionally graded scaffolds," Acta biomaterialia, vol. 7, pp. 530-537, 2011.
    [25] S. Al-Bermani, M. Blackmore, W. Zhang, and I. Todd, "The origin of microstructural diversity, texture, and mechanical properties in electron beam melted Ti-6Al-4V," Metallurgical and materials transactions a, vol. 41, pp. 3422-3434, 2010.
    [26] P. Edwards and M. Ramulu, "Fatigue performance evaluation of selective laser melted Ti–6Al–4V," Materials Science and Engineering: A, vol. 598, pp. 327-337, 2014.
    [27] N. Hrabe and T. Quinn, "Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti–6Al–4V) fabricated using electron beam melting (EBM), Part 2: Energy input, orientation, and location," Materials Science and Engineering: A, vol. 573, pp. 271-277, 2013.
    [28] N. Hrabe and T. Quinn, "Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti–6Al–4V) fabricated using electron beam melting (EBM), part 1: Distance from build plate and part size," Materials Science and Engineering: A, vol. 573, pp. 264-270, 2013.
    [29] J. Karlsson, A. Snis, H. Engqvist, and J. Lausmaa, "Characterization and comparison of materials produced by Electron Beam Melting (EBM) of two different Ti–6Al–4V powder fractions," Journal of Materials Processing Technology, vol. 213, pp. 2109-2118, 2013.
    [30] S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H. Richard, et al., "On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance," International Journal of Fatigue, vol. 48, pp. 300-307, 2013.
    [31] L. Murr, E. Esquivel, S. Quinones, S. Gaytan, M. Lopez, E. Martinez, et al., "Microstructures and mechanical properties of electron beam-rapid manufactured Ti–6Al–4V biomedical prototypes compared to wrought Ti–6Al–4V," Materials characterization, vol. 60, pp. 96-105, 2009.
    [32] L. Murr, S. Quinones, S. Gaytan, M. Lopez, A. Rodela, E. Martinez, et al., "Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications," Journal of the mechanical behavior of biomedical materials, vol. 2, pp. 20-32, 2009.
    [33] C. Qiu, N. J. Adkins, and M. M. Attallah, "Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti–6Al–4V," Materials Science and Engineering: A, vol. 578, pp. 230-239, 2013.
    [34] E. Sallica-Leva, A. Jardini, and J. Fogagnolo, "Microstructure and mechanical behavior of porous Ti–6Al–4V parts obtained by selective laser melting," Journal of the mechanical behavior of biomedical materials, vol. 26, pp. 98-108, 2013.
    [35] B. Song, S. Dong, B. Zhang, H. Liao, and C. Coddet, "Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V," Materials & Design, vol. 35, pp. 120-125, 2012.
    [36] I. Yadroitsev, P. Krakhmalev, and I. Yadroitsava, "Selective laser melting of Ti6Al4V alloy for biomedical applications: Temperature monitoring and microstructural evolution," Journal of Alloys and Compounds, vol. 583, pp. 404-409, 2014.
    [37] V. Cain, L. Thijs, J. Van Humbeeck, B. Van Hooreweder, and R. Knutsen, "Crack propagation and fracture toughness of Ti6Al4V alloy produced by selective laser melting," Additive Manufacturing, vol. 5, pp. 68-76, 2015.
    [38] L. Zeng and T. R. Bieler, "Effects of working, heat treatment, and aging on microstructural evolution and crystallographic texture of α, α′, α″ and β phases in Ti–6Al–4V wire," Materials Science and Engineering: A, vol. 392, pp. 403-414, 2005.
    [39] H. Rafi, N. Karthik, H. Gong, T. L. Starr, and B. E. Stucker, "Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting," Journal of materials engineering and performance, vol. 22, pp. 3872-3883, 2013.
    [40] X. Zhao, S. Li, M. Zhang, Y. Liu, T. B. Sercombe, S. Wang, et al., "Comparison of the microstructures and mechanical properties of Ti–6Al–4V fabricated by selective laser melting and electron beam melting," Materials & Design, vol. 95, pp. 21-31, 2016.
    [41] F. G. Mur, D. Rodriguez, and J. Planell, "Influence of tempering temperature and time on the α′-Ti-6Al-4V martensite," Journal of alloys and compounds, vol. 234, pp. 287-289, 1996.
    [42] M. Qian, W. Xu, M. Brandt, and H. P. Tang, "Additive manufacturing and postprocessing of Ti-6Al-4V for superior mechanical properties," MRS Bulletin, vol. 41, pp. 775-784, 2016.
    [43] L. Facchini, E. Magalini, P. Robotti, and A. Molinari, "Microstructure and mechanical properties of Ti-6Al-4V produced by electron beam melting of pre-alloyed powders," Rapid Prototyping Journal, vol. 15, pp. 171-178, 2009.
    [44] K.-B. Kim, W.-C. Kim, H.-Y. Kim, and J.-H. Kim, "An evaluation of marginal fit of three-unit fixed dental prostheses fabricated by direct metal laser sintering system," Dental Materials, vol. 29, pp. e91-e96, 2013.
    [45] R. C. Oyagüe, A. Sánchez-Turrión, J. F. López-Lozano, J. Montero, A. Albaladejo, and M. J. Suárez-García, "Evaluation of fit of cement-retained implant-supported 3-unit structures fabricated with direct metal laser sintering and vacuum casting techniques," Odontology, vol. 100, pp. 249-253, 2012.
    [46] L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck, and J.-P. Kruth, "A study of the microstructural evolution during selective laser melting of Ti–6Al–4V," Acta materialia, vol. 58, pp. 3303-3312, 2010.
    [47] B. Vandenbroucke and J.-P. Kruth, "Selective laser melting of biocompatible metals for rapid manufacturing of medical parts," Rapid Prototyping Journal, vol. 13, pp. 196-203, 2007.
    [48] B. Vrancken, L. Thijs, J.-P. Kruth, and J. Van Humbeeck, "Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties," Journal of Alloys and Compounds, vol. 541, pp. 177-185, 2012.
    [49] F. G. Arcella and F. Froes, "Producing titanium aerospace components from powder using laser forming," Jom, vol. 52, pp. 28-30, 2000.
    [50] J. Beuth and N. Klingbeil, "The role of process variables in laser-based direct metal solid freeform fabrication," Jom, vol. 53, pp. 36-39, 2001.
    [51] J. Beuth, J. Fox, J. Gockel, C. Montgomery, R. Yang, H. Qiao, et al., "Process mapping for qualification across multiple direct metal additive manufacturing processes," in Proceedings of SFF Symposium., Austin, TX, Aug, 2013, pp. 12-14.
    [52] S. Bontha and N. Klingbeil, "Thermal process maps for controlling microstructure in laser-based solid freeform fabrication," in Solid freeform fabrication proceedings, 2003, pp. 219-226.
    [53] S. Bontha, N. W. Klingbeil, P. A. Kobryn, and H. L. Fraser, "Thermal process maps for predicting solidification microstructure in laser fabrication of thin-wall structures," Journal of Materials Processing Technology, vol. 178, pp. 135-142, 2006.
    [54] S. Bontha, N. W. Klingbeil, P. A. Kobryn, and H. L. Fraser, "Effects of process variables and size-scale on solidification microstructure in beam-based fabrication of bulky 3D structures," Materials Science and Engineering: A, vol. 513, pp. 311-318, 2009.
    [55] P. Kobryn, E. Moore, and S. Semiatin, "The effect of laser power and traverse speed on microstructure, porosity, and build height in laser-deposited Ti-6Al-4V," Scripta Materialia, vol. 43, pp. 299-305, 2000.
    [56] K. Puebla, L. E. Murr, S. M. Gaytan, E. Martinez, F. Medina, and R. B. Wicker, "Effect of melt scan rate on microstructure and macrostructure for electron beam melting of Ti-6Al-4V," Materials Sciences and Applications, vol. 3, p. 259, 2012.
    [57] J. Gockel and J. Beuth, "Understanding Ti-6Al-4V microstructure control in additive manufacturing via process maps," Solid Freeform Fabrication Proceedings, Austin, TX, Aug, pp. 12-14, 2013.
    [58] C. Kenel and C. Leinenbach, "Influence of cooling rate on microstructure formation during rapid solidification of binary TiAl alloys," Journal of Alloys and Compounds, vol. 637, pp. 242-247, 2015/07/15/ 2015.
    [59] J. Gockel, J. Beuth, and K. Taminger, "Integrated control of solidification microstructure and melt pool dimensions in electron beam wire feed additive manufacturing of Ti-6Al-4V," Additive Manufacturing, vol. 1-4, pp. 119-126, 2014.
    [60] J. Sieniawski, W. Ziaja, K. Kubiak, and M. Motyka, "Microstructure and mechanical properties of high strength two-phase titanium alloys," in Titanium Alloys-Advances in Properties Control, ed: InTech, 2013.
    [61] M. Yan and P. Yu, "An overview of densification, microstructure and mechanical property of additively manufactured Ti-6Al-4V—comparison among selective laser melting, electron beam melting, laser metal deposition and selective laser sintering, and with conventional powder," in Sintering techniques of materials, ed: InTech, 2015.
    [62] B. S. Bass, "Validating the Arcam EBM process as an alternative fabrication method for titanium-6Al-4V alloys," 2008.
    [63] P. Edwards, A. O'Conner, and M. Ramulu, "Electron beam additive manufacturing of titanium components: properties and performance," Journal of Manufacturing Science and Engineering, vol. 135, p. 061016, 2013.
    [64] S. Rengers, "Electron beam melting [EBM] vs. direct metal laser sintering [DMLS]," in SAMPE Midwest Chapter, Direct Part Manufacturing Workshop, 2012.
    [65] M. Svensson, U. Ackelid, and A. Ab, "Titanium alloys manufactured with electron beam melting mechanical and chemical properties," in Proceedings of the Materials and Processes for Medical Devices Conference, 2010, pp. 189-194.
    [66] S. Lu, H. Tang, Y. Ning, N. Liu, D. StJohn, and M. Qian, "Microstructure and mechanical properties of long Ti-6Al-4V rods additively manufactured by selective electron beam melting out of a deep powder bed and the effect of subsequent hot isostatic pressing," Metallurgical and Materials Transactions A, vol. 46, pp. 3824-3834, 2015.
    [67] A. Bandyopadhyay, F. Espana, V. K. Balla, S. Bose, Y. Ohgami, and N. M. Davies, "Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants," Acta biomaterialia, vol. 6, pp. 1640-1648, 2010.
    [68] J. Wolff, "The law of bone remodelling. Translated by P. Maquet and R. Furlong," New York, S pringer, vol. 1, p. 8, 1986.
    [69] X. Y. Cheng, S. J. Li, L. E. Murr, Z. B. Zhang, Y. L. Hao, R. Yang, et al., "Compression deformation behavior of Ti-6Al-4V alloy with cellular structures fabricated by electron beam melting," J Mech Behav Biomed Mater, vol. 16, pp. 153-62, Dec 2012.
    [70] D. Hara, Y. Nakashima, T. Sato, M. Hirata, M. Kanazawa, Y. Kohno, et al., "Bone bonding strength of diamond-structured porous titanium-alloy implants manufactured using the electron beam-melting technique," Mater Sci Eng C Mater Biol Appl, vol. 59, pp. 1047-1052, Feb 2016.
    [71] P. Heinl, L. Muller, C. Korner, R. F. Singer, and F. A. Muller, "Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting," Acta Biomater, vol. 4, pp. 1536-44, Sep 2008.
    [72] S. Zhao, S. J. Li, W. T. Hou, Y. L. Hao, R. Yang, and R. D. K. Misra, "The influence of cell morphology on the compressive fatigue behavior of Ti-6Al-4V meshes fabricated by electron beam melting," J Mech Behav Biomed Mater, vol. 59, pp. 251-264, Jun 2016.
    [73] J. Parthasarathy, B. Starly, S. Raman, and A. Christensen, "Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM)," J Mech Behav Biomed Mater, vol. 3, pp. 249-59, Apr 2010.
    [74] (2012). Available: http://www.bananarepublican.info/Stress_shielding.htm
    [75] Z.-K. Liu, "First-principles calculations and CALPHAD modeling of thermodynamics," Journal of phase equilibria and diffusion, vol. 30, p. 517, 2009.
    [76] A. Standard, "F136, 2013.“Standard Specification for Wrought Titanium-6Aluminum-4Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications,” ASTM International, West Conshohocken, PA, 2003, DOI: 10.1520/F136-13," ed.
    [77] A. Arcam, "Ti6Al4V ELI titanium alloy," ed: Arcam EBM System, 2008.
    [78] 柯清水, 新世纪化工化学大辞典: 正文书局, 2000.
    [79] G. Lütjering and J. C. Williams, Titanium: Springer Science & Business Media, 2007.
    [80] H. Galarraga, R. J. Warren, D. A. Lados, R. R. Dehoff, M. M. Kirka, and P. Nandwana, "Effects of heat treatments on microstructure and properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM)," Materials Science and Engineering: A, vol. 685, pp. 417-428, 2017.
    [81] Z. Fan, "On the young's moduli of Ti 6Al 4V alloys," Scripta metallurgica et materialia, vol. 29, pp. 1427-1432, 1993.
    [82] Y. Lee, M. Peters, and G. Welsch, "Elastic moduli and tensile and physical properties of heat-treated and quenched powder metallurgical Ti-6Al-4V alloy," Metallurgical Transactions A, vol. 22, pp. 709-714, 1991.

    無法下載圖示 校內:2023-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE