簡易檢索 / 詳目顯示

研究生: 賴典賢
Lai, Tien-Hsien
論文名稱: 雙偏振Nd:YAG雷射的輸出特性與混沌之研究
Study of characteristics and chaos in Nd:YAG laser with bipolarization
指導教授: 魏明達
Wei, Ming-Da
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 64
中文關鍵詞: 雙偏振混沌偏振鬆弛振盪固態雷射
外文關鍵詞: bipolarization, chaos, polarization relaxation oscillations, solid-state laser
相關次數: 點閱:131下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究調制雙偏振摻釹釔鋁石榴石(Nd:YAG)雷射的輸出特性與動態行為,雙偏振雷射存在三種鬆弛振盪頻率,其中較高頻率對應典型的鬆弛震盪頻率,而其他負責正交偏振模的反相動力學。在低泵源功率下的反向模態會消失。當調制頻率接近典型的鬆弛震盪頻率時,觀察到倍週期路徑進入混沌,其中兩個是負責正交偏振模的反相動力學。兩個正交偏振輸出強度的平均震盪頻率會在調制頻率附近,與此相反,當調制頻率接近反相模態的頻率時,兩個偏振的平均頻率是不同的。此外,兩個正交偏振強度之間的同步藉由CPR方法進行了分析和討論。

    Characteristics and dynamic behaviors of the bipolarized Nd:YAG laser using pump modulation were studied. Three relaxation oscillation frequencies exist in the bipolarized lasing regime, in which the highest frequency corresponds to the typical relaxation oscillation frequency and the other are responsible for the antiphase dynamics of orthogonally polarization modes. The antiphase mode disappeared as the low pump power. When the modulation frequency approached to the typical relaxation oscillation frequency, the period-doubling route to chaos was observed. The average oscillating frequencies of the output intensity in both orthogonal polarizations were near the modulation frequency. On the contrary, the average frequencies in two polarizations would be different when the modulation frequency approached to the frequency of the antiphase mode. Moreover, the synchronization of the intensities between two orthogonal polarizations were analyzed and discussed by Correlation between Probabilities of Recurrence method.

    摘要 I Abstract II 致謝 III 目錄 IV 圖表目錄 VI 第一章 序論 1 1.1背景 1 1.2研究動機與目標 4 第二章 原理 6 2.1雷射基本原理 6 2.2鬆弛振盪頻率與調制 7 2.3偏振鬆弛振盪頻率和反相(Antiphase)[7-15] 8 2.4希爾伯特轉換(Hilbert Transform)[21-23] 11 2.5相位再現機率之間的相關性(CPR)[25] 13 第三章 雙偏振雷射之動態與混沌行為 17 3.1雙偏振實驗架構與步驟 17 3.2雙偏振雷射輸出特性 23 3.2-1Nd:YAG偏振性質 24 3.3調制雷射之混沌行為 33 3.3-1增加泵源功率 33 3.3-2改變泵源偏振方向 50 第四章 結論與未來展望 59 4.1結論 59 4.2未來展望 60 參考文獻 61

    [1] 郝柏林, “分岔、混沌、奇怪吸引子、亂流及其它”, 物理學進展, 1983, 3(01).
    [2] E. Ott, et al., “Chaos in Dynamical Systems(2^st ed)”, New York: Cambridge University Press, 2002.
    [3] D. Gulick, et al., “Encounters with chaos”, New York: McGraw-Hill, 1992.
    [4] E. N. Lorenz, et al., “Deterministic Nonperiodic Flow”, J. Atmos. Sci. 20, pp.130~148(1963).
    [5] K. Sun, X. Liu and C. Zhu, “Hyperchaos and hyperchaos control of the sinusoidally forced simplified Lorenz system”, NONLINEAR DYNAMICS, 69, pp.1383~1391, 2012.
    [6] E. N. Lorenz, et al., “Three Approaches to Atmospheric Predictability”, Amer. Meteor., Soc.50, p.345, 1969.
    [7] K. Otsuka, “Winner-Takes-All Dynamics and Antiphase States in Modulated Multimode Lasers”, Phys. Rev. Lett., 67, 1090, 1991.
    [8] K. Otsuka, et al., “ Alternate time scale in mnltimode lasers”, Phys. Rev. A, 46, 1692, 1992.
    [9] S. Bielawski, D. Derozier and P. Glorieux, “Antiphase dynamics and polarization effects in the Nd-doped fiber laser”, Phys. Rev. A, 46, 2811 (1992).
    [10] K. Otsuka and Y. Sato, “Grouping of antiphase oscillations in modulated multimode lasers”, Phys. Rev. A, 54, 4464, 1996.
    [11] K. Otsuka, P. Mandel,*J.-Y.Wang and D. Pieroux, “Two-Mode Laser Power Spectra”, Phys. Rev. Lett., 76, 2694, 1996.
    [12] K. Otsuka and Y. Sato, “Clustering, grouping, self-induced switching, and controlled dynamic pattern generation in an antiphase intracavity second-harmonic-generation laser”, Phys. Rev. E, 56, 1997.
    [13]K. Otsuka, P. Mandel,*J.-Y. Wang and D. Pieroux, “Parametric resonance in a modulated microchip multimode laser”, Opt, Lett., 22, 1997.
    [14] G. Bouwmans, B. Ségard, P. Glorieux, P. A. Khandokhin, N. D. Milovsky and E. Yu. Shirokov, “Polarization dynamics of longitudinally monomode bipolarized microchip solid-state lasers”, Radiophysics and Quantum Electronics, 47, pp.813~827, 2004.
    [15] I. V. Ievlev, P. A. Khandokhin, E. Yu. Shirokov, “Polarisation dynamics of single-longitudinal-mode Nd:YAG lasers with a weakly anisotropic cavity”, Quantum Electronics, 36, pp.228~232, 2006.
    [16] K. Otsuka, et al., “Chaos synchronization among orthogonally polarized emissions in a dual-polarization laser”, Phys. Rev. E, 76, 026204, 1997.
    [17] K. Otsuka, et al., “Chaotic oscillations associated with the breakup of polarization entangled coherent states in a microchip solid-state laser”, Opt, Lett., 36, 2011.
    [18] W. Klische, H.R. Telle & C.O. Weiss, “Chaos in a solid-state laser with a periodically modulated pump”, Opt, Lett., 9, pp.561~563, 1984.
    [19] W. Koechner, et al., “Solid-State Laser Engineering”(4^st ed.), New York: spring, 1996.
    [20] T. S. Parker & L. O. Chua, “Practical Numerical Algorithms for Chaotic Systems”, California: Springer Verlog, 1989.
    [21]T.-L. Yao, H.-F.Liu, J.-L.Xu, W.-F.Li, “Estimating the largest Lyapunov exponent and noise level from chaotic time series”, chaos, 22, 033102, 2012.
    [22] A. S. Pikovsky, M. G. Rosenblum and J. Kurths, “Synchronization: A universal concept in nonlinear sciences”, New York: Cambridge University Press, 2003.
    [23] B. S. Dmitriev, A. E. Hramov, A. A. Koronovskii, A. V. Starodubov, D. I. Trubetskov and Y. D. Zharkov, “First Experimental Observation of Generalized Synchronization Phenomena in Microwave Oscillators”, Phys. Rev. Lett., 102, Article Number. 074101, pp.1~4, 2009.
    [24] A. Ahlborn and U. Parlitz, “Experimental observation of chaotic phase synchronization of a periodically modulated frequency-doubled Nd:YAG laser”, Opt. Lett., 34, pp.2754~2756, 2009.
    [25] A. S. Pikovsky, M. G. Rosenblum and J. Kurths, “From Phase to Lag Synchronization in Coupled Chaotic Oscillators”, Phys. Rev. Lett., 78, pp.4193~4196, 1997.
    [26] A. S. Pikovsky, M. G. Rosenblum, G. V. Osipov and J. Kurths, “Phase synchronization of chaotic oscillators by external driving”, Physica D, 104, pp.219~238, 1997.
    [27] S. L. Hahn, et al., “Hilbert Transforms in Signal Processing”, Michigan: Artech House, 1996.
    [28] F. R. Kschischang, et al., “The Hilbert transform”, Toronto: Department of Electrical and Computer Engineering University of Toronto, 2006.
    [29] H. Poincaré, et al., “Sur le problème des trois corps et les équations de la dynamique”, Acta Mathematica, 13,pp.1~271, 1890.
    [30] N. Marwan∗, M. C. Romano, M. Thiel and J. Kurths, “Recurrence plots for the analysis of complex systems”, Physics reports, 438, pp.237~329, 2007.
    [31] J.-P. Eckmann, S. O. Kamphorst and D. Ruelle, “Recurrence plots of Dynamical Systems”, Europhys.Lett., 5, pp.973~977, 1987.
    [32] M. C. Romano, M. Thiel, J. Kurths, I. Z. Kiss and J. L. Hudson, “Detection of synchronization for non-phase-coherent and non-stationary data”, Europhys.Lett., 71, pp.466~492, 2005.
    [33] 羅穎中, “軸向激發摻釹釩酸釔雷射在簡併共振腔下的動力學研究”, 東海大學, 碩士論文, 2003.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE