簡易檢索 / 詳目顯示

研究生: 陳眉瑜
Chen, Mei-Yu
論文名稱: Ø20µm Ag-2Pd合金導線放電結球特性及打線接合界面通電效應探討
Studies on EFO Characteristics and Wire Bonding Electrification Effects of Ø20μm Ag-2Pd Alloy Wire
指導教授: 呂傳盛
Lui, Truan-Sheng
陳立輝
Chen, Li-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 72
中文關鍵詞: 銀導線銀鈀合金線接合界面
外文關鍵詞: Ag wire, Ag-2Pd alloy wire, wire bonding interface
相關次數: 點閱:78下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 銀相較於金有低成本及導電性佳的優點,機械性質也與金相近,因此在封裝產業有取代金線的潛力,但純銀線與鋁墊進行打線接合時易產生硬脆的介金屬化合物進而導致元件失效。本研究材料為Ø 20μm純銀線與添加2wt.% Pd的銀鈀合金線。首先,藉由線材退火前後的微觀組織、機械性質選定適當退火條件,再做放電結球後的微觀組織及機械性質的探討。最終選取as-received純銀線與退火275℃的銀鈀合金線,經打線接合後通電,觀察通電前後接合界面強度的變化與介金屬化合物生長情形。
    as-received純銀線與銀鈀合金線經275℃、325℃、375℃持溫30分鐘的退火處理後,純銀線與銀鈀線硬度分別下降至0.3~0.37GPa與 0.74~0.77GPa。由於純銀線退火後強度太低,故在放電結球實驗使用as-received純銀線,銀鈀線用275℃的退火線,as-received銀鈀線在此階段實驗與275℃退火線做結球後的組織與機械性質比較。
    經放電結球後,純銀線球部組織為柱狀晶,as-received銀鈀線為樹枝狀的柱狀晶。相較於as-received銀鈀線,275℃退火線球部組織有較多比例的樹枝狀晶。受到放電產生的熱影響,純銀線熱影響區晶粒粗大化現象較銀鈀合金線顯著;機械性質方面,銀鈀線結球後的UTS、YS、EL都比純銀線高。打線接合方面,線材與鋁基板接合後經拉伸測試,通電前,Ag-2Pd(275℃)的平均斷裂強度(7.7gf)高於純銀線(6.9gf)。經直流電0.4A通電0.5hr、1hr、2hr,純銀線與Ag-2Pd(275℃)斷裂強度皆下降,斷裂位置集中在線材上,與鋁基板無界面剝離的現象(即lift-off)。推測此原因為通電產生大量的焦耳熱,使接合後的線材晶粒成長為等徑晶,造成線材強度弱化。經通電5hr,純銀線與鋁基板的接合界面產生許多裂紋,Ag-2Pd(275℃)仍與鋁基板有良好且平整的接合界面;經通電24hr,純銀線與鋁基板發生lift-off,Ag-2Pd (275℃)與鋁基板仍保有良好接合界面。

    In the packaging industry, Ag wire has the potential to replace Au wire due to its superior electrical properties, lower cost and similar mechanical properties compared with Au. When Ag wire bonds to Al pad, the growing and brittle Ag-Al intermetallic compounds (IMCs) will cause the failure of electronic components. In this study, the experimental materials are pure Ag wire and Ag-2Pd alloy wire. First, the appropriate annealing conditions were selected by the microstructure and mechanical properties of wires before and after annealing, and then the microstructure and mechanical properties after EFO process were investigated. Ultimately, the as-received Ag wire and Ag-2Pd wire annealed at 275℃ were selected to bond with Al pad and then the DC current was applied in order to discuss the variations of bonding interfacial strength and IMCs growth.
    After as-received pure Ag and Ag-2Pd wires annealed at 275℃, 325℃, 375℃ for 30 minutes, the nano-hardness of pure Ag decreased to 0.3~0.37GPa, and that of Ag-2Pd decreased to 0.74~0.77GPa. Because the nano-hardness of annealing Ag wire was too low, the as-received Ag wire was used in the EFO process, while the Ag-2Pd wire annealed at 275℃ was selected. In this process, as-received Ag-2Pd wire was compared with Ag-2Pd wire annealed at 275℃ for their microstructure and mechanical properties.
    After EFO process, the FAB of Ag wire was columnar grains, while the Ag-2Pd wire was dendritic columnar grains. Compared with Ag-2Pd wire, there were more dendrites in the FAB of Ag-2Pd(275℃). Due to the heat effects after EFO process, the grains of Ag wire in HAZ were coarser than those of Ag-2Pd and Ag-2Pd(275℃) wires. About mechanical properties, the UTS, YS and EL of Ag-2Pd and Ag-2Pd(275℃) wires were higher than those of Ag wire after EFO process. About wire bonding process, before electrical current test, the average bonding strength of Ag-2Pd(275℃) wire (7.7gf) is stronger than that of Ag wire (6.9gf); after applying 0.4A DC current to the bonding interface for 0.5hr, 1hr and 2hr, the bonding strength of two wires decreased, and the lift-off on bonding interface of those wires didn’t occur because the electrical current induced a lot of heat into wires, the grains of wire grew up and formed into equal-diameter grains. Those equal-diameter grains caused the weakening of wires, so the fracture sites occurred on the wires.
    After applying 0.4A DC current to the bonding interface for 5hr, there were many cracks at the Ag-Al interface, but the Ag-2Pd(275℃) wire still had a good and flat bonding interface with Al pad; after electrical current test for 24hr, the lift-off occurred at Ag-Al interface, but the Ag-2Pd(275℃) wire still had a good bonding interface with Al pad.

    中文摘要 I Abstract II 誌謝 IV 總目錄 VI 表目錄 IX 圖目錄 X 第一章 前言 1 第二章 文獻回顧 2 2-1打線接合製程 2 2-1-1打線接合依銲點分類 2 2-1-2打線接合依接合技術分類 3 2-2放電結球 4 2-2-1結球外觀 4 2-2-2球部與線材微觀組織 4 2-3接合界面品質與強度量測 4 2-3-1影響接合品質的因素 4 2-3-2接合界面強度的量測 5 2-4接合材料 6 2-4-1鋁線 6 2-4-2金線 7 2-4-3銅線 7 2-5 銀線與銀鈀合金導線 7 第三章 實驗方法與步驟 17 3-1實驗材料 17 3-2線材熱處理、組織觀察與機械性質測試 17 3-2-1真空退火熱處理 17 3-2-2微觀組織觀察 17 3-2-3奈米硬度測試 18 3-2-4拉伸測試 18 3-3放電結球 18 3-3-1微觀組織觀察 19 3-3-2奈米硬度測試 19 3-3-3拉伸測試與拉伸破斷面觀察 19 3-4接合界面之通電試驗 19 3-4-1通電試驗 20 3-4-2接合強度試驗 20 3-4-3接合界面觀察與分析 20 第四章 實驗結果 27 4-1線材退火處理 27 4-1-1微觀組織 27 4-1-2線材硬度與拉伸性質 27 4-2放電結球 28 4-2-1結球外觀與球部微觀組織 28 4-2-2結球及熱影響區硬度 29 4-2-3結球拉伸性質 29 4-2-4結球拉伸破斷形貌 30 4-3通電對接合界面之影響 30 4-3-1接合強度 30 4-3-2接合拉伸斷裂位置 31 4-3-3接合處之橫截面 31 4-3-4接合界面之TEM分析 32 第五章 討論 60 5-1放電結球效應探討 60 5-1-1純銀線結球柱狀晶成核成長機制 60 5-1-2銀鈀線結球柱枝狀晶成核成長機制 60 5-1-3鈀的添加對機械性質的影響 61 5-2通電效應探討 62 5-2-1通電對接合強度的影響 62 5-2-2通電對接合界面的影響 62 第六章 結論 67 參考文獻 69

    1. G.G. Harman and J. Albers, “Ultrasonic Welding Mechanism as Applied to Aluminum-Wire and Gold-Wire Bonding in Microelectronics”, IEEE Transactions on Parts Hybrids and Packaging, Vol. 13 (1977), pp. 406-412.
    2. S. Kaimori, T. Nonaka and A. Mizoguchi, “The Development of Cu Bonding Wire with Oxidation-Resistant Metal Coating”, IEEE Transactions on Advanced Packaging, Vol. 29 (2006), pp. 227-231.
    3. T. Uno, “Enhancing Bondability with Coated Copper Bonding Wire”, Microelectronics Reliability, Vol. 51 (2011), pp. 88-96.
    4. 李俊德,蔡幸樺,蔡志欣,莊東漢,「21世紀封裝導線的新材料-銀金鈀合金線」,電子月刊,第十八卷,第四期 (民國一百零一年),180-191頁。
    5. Herman, “Wire Bonding in Microelectronics Materials, Processes, Reliability, and Yeild, 2nd ed.”, McGraw-Hill, (1997), pp.1-10.
    6. 陳建良,「發光二極體中打線接合構裝技術之研究」,國立台灣科技大學醫學工程研究所碩士論文,民國一百年。
    7. 謝宗雍,「電子構裝技術簡介」,電子月刊,第三卷,第七期 (民國八十六年),57-76頁。
    8. A. Shah, H. Gaul, M. Schneider-Ramelow, H. Reichl, M. Mayer and Y. Zhou, “Ultrasonic Friction Power During Al Wire Wedge-Wedge Bonding”, Journal of Applied Physics, Vol. 106 (2009).
    9. R.R. Tummala, E.J. Rymaszewski and A.G. Klopfenstein, “Microelectronics Packaging Handbook”, Van Nostrand Reinhold, (1989).
    10. M. L. Minges, “Electronic Materials Handbook-Packaging”, ASM International, Vol. 1 (1989).
    11. 許明哲,「先進微電子3D-IC構裝」,民國一百年。
    12. C.J. Hang, C.Q. Wang, Y.H. Tian, M. Mayer, Y. Zhou, “Microstructural Study of Copper Free Air Balls in Thermosonic Wire Bonding”, Microelectronic Engineering, Vol. 85 (2008), pp. 1815-1819.
    13. S. Kaimori, T. Nonaka, and A. Mizoguchi, “The Development of Cu Bonding Wire with Oxidation-Resistant Metal Coating”, IEEE Transactions on Advanced Packing, Vol. 29, NO. 2 (2006), pp. 227-231.
    14. 林宜璋,「不同退火條件之銅導線經放電結球前後之機械性質與織構分析」,國立成功大學材料科學與工程研究所碩士論文,民國九十六年。
    15. H. C. William, “Metals Handbook-Properties and Selection: Nonferrous Alloys and Pure Metals”, ASM International, 9th ed., (1979).
    16. G. Khatibi, B. Weiss, J. Bernardi and S. Schwarz, “Microstructural Investigation of Interfacial Features in Al Wire Bonds”, Journal of Electronic Materials, Vol. 41 (2012), pp. 3436-3446.
    17. H.G. Kim, T.W. Lee, E.K. Jeong, W.Y. Kim and S.H. Lim, “Effects of Alloying Elements on Microstructure and Thermal Aging Properties of Au Bonding Wire”, Microelectronics Reliability, Vol. 51, No. 12 (2011), pp. 2250-2256.
    18. M.A. Bahi, P. Lecuyer, A. Gentil, H. Fremont, J.P. Landesman, F. Christien and R.L. Gall, “Degradation Mechanisms of Au-Al Wire Bonds During Qualification Tests at High Temperature for Automotive Applications: Quality Improvement by Process Modification”, IEEE Transactions on Device and Materials Reliability, Vol. 8, No. 3 (2008), pp. 484-489.
    19. 李俊德,蔡幸樺,蔡志欣,莊東漢,「次世代LED銲線技術發展趨勢與現況」,機械工業月刊,第三百五十四期 (民國一百零一年),90-101頁。
    20. S.A. Gam, H.J. Kim, J.S. Cho, Y.J. Park, J.T. Moon and K.W. Paik, “Effects of Cu and Pd Addition on Au Bonding wire/Al pad Interfacial Reactions and Bond Reliability”, Journal of Electronic Materials, Vol. 35, No. 11 (2006), pp. 2048-2055.
    21. T.S. Saraswati, T. Sritharan, C.I. Pang, Y.H. Chew, C.D. Breach, F. Wulff, S.G. Mhaisalkar and C.C. Wong, “The Effects of Ca and Pd Dopants on Gold Bonding Wire and Gold Rod”, Thin Solid Films, Vol. 462 (2004), pp. 351-356.
    22. M. A. Bahi, P. Lecuyer, A. Gentil, H. Fremont, J.P. Landesman, F. Christien, “Bond Reliability Improvement at High Temperature by Pd Addition on Au Bonding Wires”, IEEE Electronics Packing Technology Conf., (2008), pp.800-807.
    23. Y.W. Lin, R. Y. Wang, W. B. Ke, I.S. Wang, Y.T. Chiu, K.C. Lu, K.L. Lin and Y. S. Lai, “The Pd Distribution and Cu Flow Pattern of the Pd-plated Cu Wire Bond and Their Effect on the Nanoindentation”, Materials Science and Engineering A, Vol.543 (2012), pp. 152-157.
    24. http://www.cnyes.com/futures/heavymetal.aspx-財經傳輸鉅亨網-貴金屬期貨交易價格。
    25. P. Villars, H. Okamoto and K. Cenzual, “ASM Alloy Phase Diagram Database”, ASM International, (2006-2013).
    26. K.A. Yoo, C. Uhm, T.J. Kwon, J.S. Cho, J.T. Moon, “Reliability Study of Low Cost Alternative Ag Bonding Wire with Various Bond Pad Materials”, IEEE Electronics Packing Technology Conf., (2009), pp. 851-857
    27. 黃翊婷,「15μm級放電結球及打線接合微細銅導線之拉伸斷線特性探討」,國立成功大學材料科學與工程研究所碩士論文,民國九十八年。
    28. 薛皓文,「退火溫度對23μm銀導線打線接合之再結晶及拉伸性質效應探討」,國立成功大學材料科學與工程研究所碩士論文,民國九十九年。
    29. W. kurz and D. J. fisher, “Fundamentals of solidfication”, (1984).
    30. 傅寬裕,半導體IC產品可靠度統計物理與工程,民國九十八年。

    下載圖示 校內:2018-08-14公開
    校外:2018-08-14公開
    QR CODE