研究生: |
鄭朝榮 Cheng, Chao-Jung |
---|---|
論文名稱: |
具分佈式與混合式布拉格反射鏡微小化氮化鎵發光二極體之量子點光色轉換研究 Investigation of Quantum Dot Color Conversion in GaN-Based Micro Light-Emitting Diodes with Distributed Bragg Reflector and Hybrid Distributed Bragg Reflection |
指導教授: |
李清庭
Lee, Ching-Ting |
共同指導教授: |
蔡宗祐
Tsai, Tzong-Yow |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 73 |
中文關鍵詞: | 氮化鎵 、發光二極體 、分佈式布拉格反射鏡 、混合式布拉格反射鏡 、量子點 、光色轉換效率 、氧化鋅奈米柱陣列 |
外文關鍵詞: | light-emitting diodes, distributed Bragg reflector, hybrid Bragg reflector, quantum dots, zinc-oxide nanorod arrays |
相關次數: | 點閱:128 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為將發光二極體應用於微投影技術上,本研究採用以微小化氮化鎵藍光發光二極體激發量子點材料的方式,以產生近紅光之光源。接著為了提升發光特性,元件於頂部及底部分別設計堆疊分佈式布拉格反射鏡及混合式布拉格反射鏡,使所發出的藍光可有效被反射回量子點混膠層中,達到多次激發量子點之效果,藉此提升量子點之激發機率及紅光之出光。所製作完成具背部混合式及頂部分佈式布拉格反射鏡之量子點粉末混膠層微小化氮化鎵藍光發光二極體相較於傳統結構元件,其紅光出光面積已有效提升33.7 %,而其CIE色度座標位於(0.50,0.21)近紅光區域,其光色轉換效率約提升9.9 %。此結構之發光二極體再於出光面成長氧化鋅奈米柱,使得更多的藍光可有效被頂部分佈式布拉格反射鏡反射利用,以提升量子點材料粉末之激發機率,使元件之CIE色度座標落於(0.59,0.26) ,使得元件之CIE色度座標落於紅光區域。
To effectively generate the red light for the micro-projection technique, the minimized the gallium nitride (GaN) blue light emitting diodes (LED) were used to excite the quantum dots (QDs). The distributed bragg reflector (DBR) and the hybrid Bragg reflector were respectively stacked at the top and bottom of the LEDs to reflect the emitted blue light. The multi-reflected blue light can excite more QDs in the slurry layer and improve the red light output. Furthermore, the zinc-oxide (ZnO) nanorod arrays were grown on the output side to lead more blue light be efficiently reflected at the top distributed Bragg reflector to generate red light output.The experimental results showed that The CIE chromaticity coordinate of the LEDs with ZnO nanorod and DBRs was located at (0.59, 0.26) which is much closer to the red light and the LEDs with the top DBR、the bottom hybrid Bragg reflector and ZnO nanorod arrays increase the area of red illumination by 41.6 %.
[1] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with Solid State Lighting Technology,” IEEE J. Sel. Top. Quantum Electron, 8, 310 (2002).
[2] K. Murakami, T. Taguchi, and M. Yoshino, “White Illumination Characteristics of ZnS-Based Phosphor Materials Excited by InGaN-Based Ultraviolet Light-Emitting Diode,” Proc. SPIE, 4079, 112 (2000).
[3] Y. Uchida, T. Setomoto, T. Taguchi, Y. Nakagawa, K. Miyazaki, in: I.-W. Wu, H. Uchiike (Eds.), “Characteristics of High-Efficient InGaN-Based White LED Lighting,” Proc. SPIE, 4079, 120 (2000)
[4] C. T. Lee, U. Z. Yang, C. S. Lee, and P. S. Chen, “White Light Emission of Monolithic Carbon-Implanted InGaN–GaN Light-Emitting Diodes,” IEEE Photonics Technol. Lett., 18, 2029 (2006).
[5] J. Piprek, R. Farrell, S. DenBaars, and S. Nakamura, “Effects of Built-In Polarization on InGaN-GaN Vertical-Cavity Surface-Emitting Lasers,” IEEE Photonics Technol. Lett., 18, 7 (2006)
[6] N. Holonyak and S. F. Bevaqua, “Coherent (Visible) Light Emission from Ga(As1–xPx) Junctions,” Appl. Phys. Lett., 1, 82 (1962).
[7] S. Nakamura, and G. Fasol, “The Blue Laser Diode: GaN Based Light Emitters and Lasers,” Spinger, Berlin (1997).
[8] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light Emitting Device Having a Nitride Compound Semiconductor and a Phosphor Containing a Garnet Fluorescent Material,” United States Patent,US 5998925 (1999).
[9] S. Nakamura, T. Mukai, and M. Senoh, “Candela-Class High-Brightness InGaN/AlGaN Double-Heterostructure Blue-Light-Emitting Diodes,” Appl. Phys. Lett., 64, 1687 (1994).
[10] H. Song, and S. Lee, “Red Light Emitting Solid State Hybrid Quantum Dot–Near-UV GaN LED devices,” Nanotechnol., 18, 255202 (2007)
[11]X. Wang, W. Li, and K. Sam, “Stable Efficient CdSe/CdS/ZnS Core/Multi-Shell Nanophosphors fabricated through a Phosphine-Free Route for White Light-Emitting-Diodes with High Color Rendering Properties,” J. Mater. Chem., 21, 8558 (2011)
[12]H. Song, and S. Lee, “Photoluminescent (CdSe)ZnS Quantum Dot–Polymethylmethacrylate Polymer Composite Thin Films in the Visible Spectral Range,” Nanotechnol., 18, 055402 (2007)
[13] J. Lee, V.C.Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, “Full Color Emission from II±VI Semiconductor Quantum Dot±Polymer Composites,’’ Adv. Mater. 12, 1102 (2000)
[14] T. P. Mthethwa, M. J. Moloto, A. De Vries, and K.P. Matabola, “Properties of Electrospun CdS and CdSe filled Poly(Methyl Methacrylate)(PMMA) Nanofibres,’’ Mater. Res. Bull., 46, 569–575 (2011).
[15] E. F. Schubert, “Light Emitting Diodes,” Cambridge University Press, New York (2006)
[16] R. E. Bailey, A. M. S., S. Nie , “Quantum Dots in Biology and Medicine,” Physica E., 25, 1-12 (2004)
[17] Y. S. Zhao, D. L. Hibbard, H. P. Lee, K. Ma, W. So, and H. Liu, “Efficiency Enhancement of InGaN/GaN Light-Emitting Diodes with a Back-Surface Distributed Bragg Reflector,” J. Electron. Mater., 32, 1523 (2003).
[18] S. J. Chang, C. F. Shen, M. H. Hsieh, C. T. Kuo, T. K. Ko, W. S. Chen, and S. C. Shei, “Nitride-Based LEDs with a Hybrid Al Mirror + TiO2/SiO2 DBR Backside Reflector,” J. Lightw. Technol., 26, 17, 3131 (2008).
[19] 郭浩中, 賴芳儀, 郭守義, LED原理與應用 (五南出版社, 1999)。]
[20] C. Wilmsen, H. Temkin, and L. A. Coldren, “Vertical Cavity Surface Emitting Lasers Design, Fabrication, Characterization, and Applications,” Cambridge University Press, Cambridge, 203 (1998)
[21] N. M. Lin, S. C. Shei, and S. J. Chang, Senior Member, IEEE, “Nitride-Based LEDs with High-Reflectance and Wide-Angle Ag Mirror+TiO2/SiO2 DBR Backside Reflector,” J. Lightwave Technol., 29, 1033 (2011)
[22] R. W. G. Hunt, “ Measuring Colour 2nd ed. ,” Ellis Horwood, London (1995).
[23] D. B. Thompson, J. J. Richardson, S. P. DenBaars, and F. F. Lange, “Light Emitting Diodes with ZnO Current Spreading Layers Deposited from a Low Temperature Aqueous Solution,” Appl. Phys. Exp., 2, 042101 ( 2009).
[24] C. C. Lin and C. T. Lee, “Enhanced Light Extraction of GaN-Based Light-Emitting Diodes using Nanorod Arrays,” Electrochem. Solid State Lett., 13, H278 (2010).
[25] K. K. Kim, S. D. Lee, H. Kim, J. C. Park, S. N. Lee, Y. Park, S. J. Park, and S. W. Kim, “Enhanced Light Extraction Efficiency of GaN-Based Light-Emitting Diodes with ZnO Nanorod Arrays Grown using Aqueous Solution,” Appl. Phys. Lett., 94, 071118 (2009).
[26] H. A. Macleod, “Monitoring of Optical Coatings,” Appl. Optics, 20, 82 (1981)
[27]王佳琨“Characterization of InGaN/GaN MQW LEDs with Single Sub-Micro Meter Scale Fabricated by Focused Ion Beam,” Department of Photonics, National Cheng Kung University (2012).
[28] W. Chung, K. Park, H. J. Yu, J. Kim, B. H. Chun, and S. H. Kim, “White Emission Using Mixtures of CdSe Quantum Dots and PMMA as a Phosphor,” Opt. Mater., 32, 515 (2010).
[29] C. Y. Huang, Y. K. Su, Y. C. Chen,P. C. Tsai, C. T. Wan, and W. L. Li, “Hybrid CdSe-ZnS Quantum Dot-InGaN-GaN Quantum Well Red Light-Emitting Diodes,” IEEE Electron Device Lett., 29, 711 (2008)
[30] H. Luo, J. K. Kim, E. F. Schubert, J. Cho, C. Sone, and Y. Park, “Analysis of High-Power Packages for Phosphor-Based White-Light-Emitting Diodes,” Appl. Phys. Lett., 86, 243505 (2005).
[31]K. J. Chen, H. C. Chen, M. H. Shih, Member, IEEE, “The Influence of the Thermal Effect on CdSe/ZnS Quantum Dots in Light-Emitting Diodes,” J. Lightwave Technol., 30, 2256 (2012)
[32] C. C. Lin and C. T. Lee, “Enhanced Light Extraction of GaN-Based Light Emitting Diodes using Nanorod Arrays,” Electrochem. Solid State Lett., 13, H278 (2010).