簡易檢索 / 詳目顯示

研究生: 鄭朝榮
Cheng, Chao-Jung
論文名稱: 具分佈式與混合式布拉格反射鏡微小化氮化鎵發光二極體之量子點光色轉換研究
Investigation of Quantum Dot Color Conversion in GaN-Based Micro Light-Emitting Diodes with Distributed Bragg Reflector and Hybrid Distributed Bragg Reflection
指導教授: 李清庭
Lee, Ching-Ting
共同指導教授: 蔡宗祐
Tsai, Tzong-Yow
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 73
中文關鍵詞: 氮化鎵發光二極體分佈式布拉格反射鏡混合式布拉格反射鏡量子點光色轉換效率氧化鋅奈米柱陣列
外文關鍵詞: light-emitting diodes, distributed Bragg reflector, hybrid Bragg reflector, quantum dots, zinc-oxide nanorod arrays
相關次數: 點閱:128下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為將發光二極體應用於微投影技術上,本研究採用以微小化氮化鎵藍光發光二極體激發量子點材料的方式,以產生近紅光之光源。接著為了提升發光特性,元件於頂部及底部分別設計堆疊分佈式布拉格反射鏡及混合式布拉格反射鏡,使所發出的藍光可有效被反射回量子點混膠層中,達到多次激發量子點之效果,藉此提升量子點之激發機率及紅光之出光。所製作完成具背部混合式及頂部分佈式布拉格反射鏡之量子點粉末混膠層微小化氮化鎵藍光發光二極體相較於傳統結構元件,其紅光出光面積已有效提升33.7 %,而其CIE色度座標位於(0.50,0.21)近紅光區域,其光色轉換效率約提升9.9 %。此結構之發光二極體再於出光面成長氧化鋅奈米柱,使得更多的藍光可有效被頂部分佈式布拉格反射鏡反射利用,以提升量子點材料粉末之激發機率,使元件之CIE色度座標落於(0.59,0.26) ,使得元件之CIE色度座標落於紅光區域。

    To effectively generate the red light for the micro-projection technique, the minimized the gallium nitride (GaN) blue light emitting diodes (LED) were used to excite the quantum dots (QDs). The distributed bragg reflector (DBR) and the hybrid Bragg reflector were respectively stacked at the top and bottom of the LEDs to reflect the emitted blue light. The multi-reflected blue light can excite more QDs in the slurry layer and improve the red light output. Furthermore, the zinc-oxide (ZnO) nanorod arrays were grown on the output side to lead more blue light be efficiently reflected at the top distributed Bragg reflector to generate red light output.The experimental results showed that The CIE chromaticity coordinate of the LEDs with ZnO nanorod and DBRs was located at (0.59, 0.26) which is much closer to the red light and the LEDs with the top DBR、the bottom hybrid Bragg reflector and ZnO nanorod arrays increase the area of red illumination by 41.6 %.

    摘要 III SUMMARY V 致謝 X 目錄 XI 表目錄 XV 圖目錄 XVI 第一章 緒論 1 1.1發光二極體的發展 1 1.2研究動機與目的 2 第二章 原理 5 2.1發光二極體的原理 5 2.2量子點材料介紹 5 2.2-1量子點的簡介 5 2.2-2量子點的性質 6 2.3反射鏡 6 2.3-1分佈式布拉格反射鏡 7 2.3-2混合式布拉格反射鏡 7 2.4 CIE色度座標 7 2.5氧化鋅奈米柱陣列之成長原理 9 2.6量測方法原理與儀器 10 2.6-1光激發光光譜儀 10 2.6-2紫外-可見光-近紅外光分光光譜儀 11 2.6-3電激發光量測系統 11 2.6-4多角度光強度量測儀 12 第三章 製程設備與元件結構、製作 18 3.1製程設備 18 3.1-1電子束蒸鍍系統 18 3.1-2光學監控系統 18 3.2元件結構、製作 19 3.2-1元件結構 19 3.2-2微小化氮化鎵藍光發光二極體製程步驟 20 3.2-3底部混合式布拉格反射鏡之製作 22 3.2-4水熱法成長氧化鋅奈米柱 23 3.2-5 N/P型電極接線 24 3.2-6頂部量子點粉末混膠之塗佈 24 3.2-7頂部分佈式布拉格反射鏡之製作 24 第四章 實驗量測分析與結果討論 31 4.1 微小化氮化鎵藍光發光二極體特性分析 31 4.1.1微小化氮化鎵藍光發光二極體光電特性 31 4.2量子點混膠層之相關材料分析 32 4.2-1壓克力材料分析 32 4.2-2量子點粉末材料分析 32 4.3分佈式布拉格反射鏡之量測 34 4.3-1使用材料之分析 34 4.3-2分佈式布拉格反射鏡之分光光譜儀量測 35 4.4混合式分佈式布拉格反射鏡之量測 36 4.4-1使用材料之分析 36 4.4-2混合式布拉格反射鏡之分光光譜儀量測 36 4.5氧化鋅奈米柱的成長 37 4.5-1氧化鋅奈米柱陣列SEM圖 37 4.6傳統結構混膠旋轉塗佈之元件特性量測結果 37 4.6-1元件電激發光光譜分析 38 4.6-2元件之CIE色度座標圖 38 4.7具混合式布拉格反射鏡之量子點粉末混膠層元件特性量測結果 39 4.7-1元件電流-電壓的關係 40 4.7-2元件電激發光光譜分析 40 4.7-3元件之CIE色度座標圖 41 4.8 具分佈式布拉格反射鏡及混合式布拉格反射鏡之元件特性量測結果42 4.8-1元件電流-電壓的關係 42 4.8-2元件電激發光光譜分析 42 4.8-3元件之CIE色度座標圖 43 4.8-4元件之光色轉換效率比較 43 4.9元件改良-於微小化氮化鎵藍光發光二極體之出光面成長氧化鋅奈米柱陣列 45 4.9-1出光面具氧化鋅奈米柱陣列之混合式及分佈式布拉格反射鏡量子點粉末混膠微小化氮化鎵藍光發二極體之相關特性 45 4.9-2出光面具氧化鋅奈米柱陣列之混合式及分佈式布拉格反射鏡量子點粉末混膠微小化氮化鎵藍光發二極體CIE色度座標圖 46 第五章 結論 68 參考文獻 70

    [1] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with Solid State Lighting Technology,” IEEE J. Sel. Top. Quantum Electron, 8, 310 (2002).
    [2] K. Murakami, T. Taguchi, and M. Yoshino, “White Illumination Characteristics of ZnS-Based Phosphor Materials Excited by InGaN-Based Ultraviolet Light-Emitting Diode,” Proc. SPIE, 4079, 112 (2000).
    [3] Y. Uchida, T. Setomoto, T. Taguchi, Y. Nakagawa, K. Miyazaki, in: I.-W. Wu, H. Uchiike (Eds.), “Characteristics of High-Efficient InGaN-Based White LED Lighting,” Proc. SPIE, 4079, 120 (2000)
    [4] C. T. Lee, U. Z. Yang, C. S. Lee, and P. S. Chen, “White Light Emission of Monolithic Carbon-Implanted InGaN–GaN Light-Emitting Diodes,” IEEE Photonics Technol. Lett., 18, 2029 (2006).
    [5] J. Piprek, R. Farrell, S. DenBaars, and S. Nakamura, “Effects of Built-In Polarization on InGaN-GaN Vertical-Cavity Surface-Emitting Lasers,” IEEE Photonics Technol. Lett., 18, 7 (2006)
    [6] N. Holonyak and S. F. Bevaqua, “Coherent (Visible) Light Emission from Ga(As1–xPx) Junctions,” Appl. Phys. Lett., 1, 82 (1962).
    [7] S. Nakamura, and G. Fasol, “The Blue Laser Diode: GaN Based Light Emitters and Lasers,” Spinger, Berlin (1997).
    [8] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light Emitting Device Having a Nitride Compound Semiconductor and a Phosphor Containing a Garnet Fluorescent Material,” United States Patent,US 5998925 (1999).
    [9] S. Nakamura, T. Mukai, and M. Senoh, “Candela-Class High-Brightness InGaN/AlGaN Double-Heterostructure Blue-Light-Emitting Diodes,” Appl. Phys. Lett., 64, 1687 (1994).
    [10] H. Song, and S. Lee, “Red Light Emitting Solid State Hybrid Quantum Dot–Near-UV GaN LED devices,” Nanotechnol., 18, 255202 (2007)
    [11]X. Wang, W. Li, and K. Sam, “Stable Efficient CdSe/CdS/ZnS Core/Multi-Shell Nanophosphors fabricated through a Phosphine-Free Route for White Light-Emitting-Diodes with High Color Rendering Properties,” J. Mater. Chem., 21, 8558 (2011)
    [12]H. Song, and S. Lee, “Photoluminescent (CdSe)ZnS Quantum Dot–Polymethylmethacrylate Polymer Composite Thin Films in the Visible Spectral Range,” Nanotechnol., 18, 055402 (2007)
    [13] J. Lee, V.C.Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, “Full Color Emission from II±VI Semiconductor Quantum Dot±Polymer Composites,’’ Adv. Mater. 12, 1102 (2000)
    [14] T. P. Mthethwa, M. J. Moloto, A. De Vries, and K.P. Matabola, “Properties of Electrospun CdS and CdSe filled Poly(Methyl Methacrylate)(PMMA) Nanofibres,’’ Mater. Res. Bull., 46, 569–575 (2011).
    [15] E. F. Schubert, “Light Emitting Diodes,” Cambridge University Press, New York (2006)
    [16] R. E. Bailey, A. M. S., S. Nie , “Quantum Dots in Biology and Medicine,” Physica E., 25, 1-12 (2004)
    [17] Y. S. Zhao, D. L. Hibbard, H. P. Lee, K. Ma, W. So, and H. Liu, “Efficiency Enhancement of InGaN/GaN Light-Emitting Diodes with a Back-Surface Distributed Bragg Reflector,” J. Electron. Mater., 32, 1523 (2003).
    [18] S. J. Chang, C. F. Shen, M. H. Hsieh, C. T. Kuo, T. K. Ko, W. S. Chen, and S. C. Shei, “Nitride-Based LEDs with a Hybrid Al Mirror + TiO2/SiO2 DBR Backside Reflector,” J. Lightw. Technol., 26, 17, 3131 (2008).
    [19] 郭浩中, 賴芳儀, 郭守義, LED原理與應用 (五南出版社, 1999)。]
    [20] C. Wilmsen, H. Temkin, and L. A. Coldren, “Vertical Cavity Surface Emitting Lasers Design, Fabrication, Characterization, and Applications,” Cambridge University Press, Cambridge, 203 (1998)
    [21] N. M. Lin, S. C. Shei, and S. J. Chang, Senior Member, IEEE, “Nitride-Based LEDs with High-Reflectance and Wide-Angle Ag Mirror+TiO2/SiO2 DBR Backside Reflector,” J. Lightwave Technol., 29, 1033 (2011)
    [22] R. W. G. Hunt, “ Measuring Colour 2nd ed. ,” Ellis Horwood, London (1995).
    [23] D. B. Thompson, J. J. Richardson, S. P. DenBaars, and F. F. Lange, “Light Emitting Diodes with ZnO Current Spreading Layers Deposited from a Low Temperature Aqueous Solution,” Appl. Phys. Exp., 2, 042101 ( 2009).
    [24] C. C. Lin and C. T. Lee, “Enhanced Light Extraction of GaN-Based Light-Emitting Diodes using Nanorod Arrays,” Electrochem. Solid State Lett., 13, H278 (2010).
    [25] K. K. Kim, S. D. Lee, H. Kim, J. C. Park, S. N. Lee, Y. Park, S. J. Park, and S. W. Kim, “Enhanced Light Extraction Efficiency of GaN-Based Light-Emitting Diodes with ZnO Nanorod Arrays Grown using Aqueous Solution,” Appl. Phys. Lett., 94, 071118 (2009).
    [26] H. A. Macleod, “Monitoring of Optical Coatings,” Appl. Optics, 20, 82 (1981)
    [27]王佳琨“Characterization of InGaN/GaN MQW LEDs with Single Sub-Micro Meter Scale Fabricated by Focused Ion Beam,” Department of Photonics, National Cheng Kung University (2012).
    [28] W. Chung, K. Park, H. J. Yu, J. Kim, B. H. Chun, and S. H. Kim, “White Emission Using Mixtures of CdSe Quantum Dots and PMMA as a Phosphor,” Opt. Mater., 32, 515 (2010).
    [29] C. Y. Huang, Y. K. Su, Y. C. Chen,P. C. Tsai, C. T. Wan, and W. L. Li, “Hybrid CdSe-ZnS Quantum Dot-InGaN-GaN Quantum Well Red Light-Emitting Diodes,” IEEE Electron Device Lett., 29, 711 (2008)
    [30] H. Luo, J. K. Kim, E. F. Schubert, J. Cho, C. Sone, and Y. Park, “Analysis of High-Power Packages for Phosphor-Based White-Light-Emitting Diodes,” Appl. Phys. Lett., 86, 243505 (2005).
    [31]K. J. Chen, H. C. Chen, M. H. Shih, Member, IEEE, “The Influence of the Thermal Effect on CdSe/ZnS Quantum Dots in Light-Emitting Diodes,” J. Lightwave Technol., 30, 2256 (2012)
    [32] C. C. Lin and C. T. Lee, “Enhanced Light Extraction of GaN-Based Light Emitting Diodes using Nanorod Arrays,” Electrochem. Solid State Lett., 13, H278 (2010).

    下載圖示 校內:2024-12-31公開
    校外:2024-12-31公開
    QR CODE