簡易檢索 / 詳目顯示

研究生: 傅思綺
Fu, Szu-Chi
論文名稱: 能源效率提升之反彈效果評估
Assessment of Rebound Effect in Response to An Improvement of Energy Efficiency
指導教授: 吳榮華
Wu, Rong-Hwa
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 92
中文關鍵詞: 反彈效果能源效率供給面投入產出模型
外文關鍵詞: Rebound effect, Energy efficiency, Supply-driven Input-Output model
相關次數: 點閱:121下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 反彈效果(Rebound effect)的現象近年引起學術界對於節能政策有效性的廣泛關注。隨著科技進步,節能設備提升能源使用的效率,降低能源的消耗。然而,一般對於能源效率提升的預期,僅計入技術上的能源節約,忽略了因能源效率提升而刺激消費行為或生產行為的改變,亦即可能產生的反彈效果。未考慮反彈效果可能會高估能源效率提升之預期能源節約量,而使得相關節能政策未能達到預期成效。
    過去探討反彈效果相關文獻中,多聚焦於單一產業內的反彈效果評估,或是以經濟體系整體的反彈效果分析為主。但各產業具備不同的產業特性,產業之間彼此依存,個別產業能源效率的提升除了改變產業本身的能源使用,同時會外溢到其他產業。本研究運用投入產出法分析各產業的能源消費特性及耗能狀況,並利用供給面投入產出模型分析產業反彈效果,探討不同產業能源效率提升後對產業本身及其他產業的影響,以評估產業實際節能潛力。
    根據研究結果顯示,2006年(民國95年)產業反彈效果多數低於10%,平均值約為3.75%,產業向前關聯效果較高的產業通常具有較高的反彈效果。反彈效果較高的產業包含基本化學工業、其他金屬、礦業、鐵公路、化學製品及其他等;反彈效果較低的產業則為漁業、加工食品及菸酒、人造纖維製造業、紡織及皮革、運輸工具等。
    考慮反彈效果下,產業節能潛力受能源密集度及反彈效果影響,基本上,能源密集度較高的產業仍具有較高的節能潛力。節能潛力較顯著之產業主要為運輸業及製造業之中間產品製造業,此類型產業在生產過程中能源直接投入的比例較高,雖然反彈效果會部分抵銷節能潛力,但效果仍相當顯著。而且中間產品製造業之產出會作為其他產業之生產投入,透過產業關聯效果,可間接降低下游產業之能源密集度。若是針對這些產業進行輔導、提升能源效率,能夠得到較好的效果。

    The phenomenon of rebound effect has sparkd considerable academic debate in recent years over the effectiveness of energy conversation policy. With advances in technology, energy-saving equipment could enhance the efficiency of energy use and reduce the energy consumption. However, the expectation, in general, for efficiency improvement involves the energy saving comes from technology, ignoring the change in energy efficiency may change the processes in production or consumer behaviors. The potential energy saving may be overestimated if the rebound effect is neglected, then cause the energy policies fail to achieve the target.
    Most of the academic literatures on rebound effect focus on the assement of a single industry or the economy system as a whole. Since the industries in economy are interdependent and have their own characterstics. A single industry to improve efficiency not only changes its use of energy, also spills over to other industries. This study applies the Input-Output (I-O) analysis to identify the characteristics and use of energy consumptions in different industries, and to analyze the rebound by supply-driven I-O model. Actual energy saving were scrutinized by incorporating rebound effect.
    According to the results of this study, the rebound effects are less than 10% in most industries in 2006, and the average is about 3.75%. The industry with higher forward linkage generally has a higher rebound effect. The industries with higher rebound effect include Basic Chemical Industry, Other Metals, Mining, Railways and Highways, and Chemicals. The industries with lower rebound effects are Fishery, Food Processing, Alcohol and Tabacco, Rayon Manufacturing, Textile and Leather, and Means of Transport.
    Considering the rebound effect, the energy intensity and rebound effect will affect the energy saving. Basically, the higher energy-intensity industry still has a higher potential for energy saving. Although the potential energy savings were offset partially by rebound effects, Transportation and Manufacturing of Intermediate Product still have higher potential energy savings. Through the linkage of industries, improve energy efficiency in these industries can get better results.

    中文摘要 i 英文摘要 iii 誌謝 v 目錄 vi 表目錄 viii 圖目錄 ix 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究方法與架構 3 1.4 研究範圍與限制 7 第二章 文獻回顧 8 2.1 反彈效果之定義 8 2.2 反彈效果相關文獻 9 2.3 投入產出分析應用於反彈效果相關研究 13 2.4 本章小結 15 第三章 台灣能源消費概況 17 3.1 國內能源消費概況 18 3.2 國內能源效率概況 21 3.3 本章小結 24 第四章 投入產出分析於反彈效果之應用 26 4.1 投入產出分析發展緣起與演進 26 4.2 投入產出分析基本理論與架構 27 4.3 量值混合投入產出分析 34 4.4 反彈效果及節能潛力估計 38 4.5 本章小結 40 第五章 資料處理 42 5.1 資料蒐集 42 5.2 部門分類與整理 42 5.3 量值混合投入產出表之建構 47 5.4 本章小結 48 第六章 結果分析 49 6.1 能源密集度分析 49 6.2 反彈效果分析 58 6.3 節能潛力分析 64 6.4 本章小結 68 第七章 結論與建議 69 7.1 結論 69 7.2 建議 71 7.3 研究貢獻 72 參考文獻 73 附錄一 2006年39部門產業關聯表 78 附錄二 2006年39部門量值混合投入產出表 84 附錄三 2006年產業直接能源密集度 90 附錄四 2006年產業總能源密集度 91 附錄五 2006年產業關聯效果 92

    中文部分
    1. 王塗發(1986),投入產出分析及其應用─台灣地區實證研究,台灣銀行季刊,第37卷第1期,頁186-218。
    2. 行政院主計處,http://www.dgbas.gov.tw/。
    3. 行政院主計處(2009),95年產業關聯表部門分類。
    4. 行政院主計處(2010),95年產業關聯表(166部門)。
    5. 行政院主計處(2010),95年產業關聯表(554部門)。
    6. 行政院主計處(2010),95年產業關聯表編製報告。
    7. 行政院主計處(2012),歷年國內各業生產與平減指數。
    8. 李高朝(2005),實用產業關聯分析精義,行政院經濟建設委員會。
    9. 周勇、林源源(2007),技術進步對能源消費回報效應的估算,經濟學家,2007年第2期,頁45-52。
    10. 陳家榮(1990),國內能源投入產出表之編製與應用研究,經濟部能源委員會,計畫編號:791F1。
    11. 黃柏鈞(2012),應用假設性市場評估法評估汽車燃油效率之願付價格與反彈效果,國立中央大學產業經濟研究所碩士論文。
    12. 經濟部能源局(2010),對能源密集產業低碳化之能源效率管理及輔導策略作法。
    13. 經濟部能源局(2012)a,2012年能源產業技術白皮書。
    14. 經濟部能源局(2012)b,95年(2006)能源平衡表。
    15. 經濟部能源局(2012)c,工業部門能源消費與能源效率變動分析。
    16. 經濟部能源局(2012)d,中華民國100年能源統計手冊。
    17. 劉美芳(2004),台灣地區進出口貿易對能源及二氧化碳排放密集度之影響,國立成功大學資源工程研究所碩士論文。
    18. 潘皙琳(2011),汽車燃油效率、反彈效果與特徵價格之研究,國立中央大學產業經濟研究所碩士論文。

    外文部分
    1. Barker, T., Ekins, P., Foxon, T., 2007. The macro-economic rebound effect and the UK economy. Energy Policy, Vol. 35, pp.4935-4946.
    2. Barkhout, P.H.G, Muskens, J.C., Velthuijsen, J.W., 2000. Define the rebound effect. Energy Policy, Vol.28, pp.425-432.
    3. Birol, F., Keppler, J.H., 2000. Price, technology, development and the rebound effect. Energy Policy, Vol.28, pp.457-469.
    4. Brookes, L.G., 1978. Energy policy, the energy price fallacy and the role of nuclear energy in the UK. Energy Policy, Vol.6, pp.94-106.
    5. Bullard, C.W., Herendeen, R.A., 1975. The energy costs of goods and services: an input output analysis of the USA, 1963 and 1967. Energy Policy, Vol.3, pp.268-278.
    6. Druckman, A., Chitnis, M., Sorrell, S., Jackson, T., 2011. Missing carbon reductions? Exploring rebound and backfire effects in UK households. Energy Policy, Vol.39, pp.3572-3581.
    7. Freire-González, J., 2011. Methods to empirically estimate direct and indirect rebound effect of energy-saving technological changes in households. Ecological Modelling, Vol.223, pp.32-40.
    8. Frondel, M., Vance, C., 2013. Re-identifying the rebound: What about asymmetry? The Energy Joutnal, Vol.34, pp.43-54.
    9. Greening, L.A., Greene D. L., Difiglio, C., 2000. Energy efficiency and consumption – the rebound effect – a survey. Energy Policy, Vol. 28, pp.389-401.
    10. Howells, M., et al., 2010. Incorporating macroeconomic feedback into an energy systems model using an IO approach: Evaluating the rebound effect in Korean electricity system. Energy Policy. Vol.38, pp.2700-2728.
    11. International Energy Agency, Key World Energy Statistics 2012.
    12. Jenkins, J., Nordhaus, T., Shellenberger, M., 2011. Energy emergence: Rebound and backfire as emergent phenomena. Breakthrough Institute.
    13. Jevons, S., 1866. The coal question, 2nd Ed. London: Macmillan and Co.
    14. Jin, S.H., 2007. The effectiveness of energy efficiency improvement in a developing country: Rebound effect of residential electricity use in South Korea. Energy Policy, Vol.35, pp.5622-5629.
    15. Khazzom, J.D, 1980. Economic implications of mandated efficiency in standards for household appliances. The Energy Journal, Vol.1, pp.21-39.
    16. Li, H., Dong, L., Wang, D., 2013. Economic and environmental gains of China’s fossil energy subsides reform: A rebound effect case study with EIMO model. Energy Policy, Vol.54, pp.335-342.
    17. Maxwell, D., Owen, P., McAndrew. L., Muehmel, K., Neubauer, A., 2011. Addressing the Rebound Effect, a Report for the European Commission DG Environment.
    18. Miller, R.E., Blair, P.D., 2009. Input-Output Analysis: Foundations and Extensions, 2nd Ed. New York: Cambridge University Press.
    19. Nässén, J., Holmberg, J., 2009. Quantifying the rebound effects of energy efficiency improvements and energy conserving behavior in Sweden. Energy Efficiency, Vol.2, pp.221-231.
    20. Ouyang, J., Long, E., Hokao, K., 2010. Rebound effect in Chinese household energy efficiency and solution for mitigating it. Energy, Vol.35, pp.5269-5276.
    21. Parkin, M., 2010. Economics, 10th Ed. Boston, MA: Prentice Hall.
    22. Sorrell, S., 2007. The rebound effect report: An assessment of the evidence for economy-wide energy savings from improved energy efficiency. UK Energy Research Centre, London.
    23. Sorrell, S., 2009. Jevons’ Paradox revisited: The evidence for backfire from improved energy efficiency. Energy Policy, Vol.37, pp.1456-1469.
    24. Sorrell, S., Dimitropoulos, J., Sommerville, M., 2009. Empirical estimates of the direct rebound effect: A review. Energy Policy, Vol. 37, pp.1356-1371.
    25. Thomas, B.A., Azevedo, I.L., 2013. Estimating direct and indirect rebound effects for U.S. households with input-output analysis Part1: Theoretical framework. Ecological Economics, Vol.86, pp.199-210.
    26. Thomas, B.A., Azevedo, I.L., 2013. Estimating direct and indirect rebound effects for U.S. households with input-output analysis Part2: Simulation. Ecological Economics, Vol.86, pp.188-198.
    27. Turner, K., 2013. “Rebound” effects from increased energy efficiency: A time to pause and reflect. The Energy Journal, Vol.34, pp.25-42.
    28. Wang, H., Zhou, P., Zhou, D.Q., 2012. An empirical study of direct rebound effect for passenger transport in urban China. Energy Economics, Vol. 34, pp.452-460.
    29. Wei, Z., Zhou, L., 2011. Review on energy rebound effect study. Applied Mechanics and Materials. Vol. 71-78, pp.2487-2492.
    30. Wu, R. H., Chen, C. Y., 1990. On the application of input-output analysis to energy issues. Energy Economics.Vol.12, No.1, pp.71-76.
    31. Wu, R. H., Chen, C. Y., 1989. Energy intensity analysis for the period 1971-1984: A case study of Taiwan. Energy. Vol.14, No.10, pp.635-641.

    下載圖示 校內:2019-01-29公開
    校外:2019-01-29公開
    QR CODE