| 研究生: |
貝國安 Aditya, Andreas |
|---|---|
| 論文名稱: |
以流體化床均質結晶技術處理合成廢水中的鋇 Barium Removal from Synthetic Wastewater by a Novel Fluidized-Bed Homogeneous Crystallization (FBHC) Technology |
| 指導教授: |
黃耀輝
Huang, Yao-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 61 |
| 外文關鍵詞: | barium removal, carbonate, crystallization ratio, fluidized bed |
| 相關次數: | 點閱:85 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Barium was concerned as one metal contained in industrial wastewater. A new process for removing metal contamination from wastewater has been developed. This work applied carbonate salts as a precipitant for homogeneously producing metal carbonate crystal without seed materials from synthetic wastewater using a fluidized bed homogeneous crystallizer. This work demonstrated the removal of barium from aqueous solution using fluidized-bed homogeneous crystallization (FBHC, without seeds). Synthetic barium wastewater with concentration 1000 ppm was treated. The result thus obtained indicated that effluent pH was essential parameter in determining the efficiency of this FBHC process. The barium removal efficiency at optimum condition could achieve total removal 99.6% and crystallization ratio 97.5%. Optimum pH was 10.5 to 11. This FBHC method is suitable to deal with cross section loading equal or under 1.286 kg∙m-2∙h-1, initial molar ratio of [CO3]/[Ba] 1.5, upflow velocity 30-35 m/h. The XRD analysis indicated that the barium salt crystallization product was witherite (BaCO3, barium carbonate). The surface morphology analysis revealed that barium carbonates particles (around 1 mm) were formed by the aggregation of fine crystals.
[1] R. Kresse, U. Baudis, P. Jäger, H.H. Riechers, H. Wagner, J. Winkler, H.U. Wolf, Barium and barium compounds, Ullmann's Encyclopedia of Industrial Chemistry (2007).
[2] N.N. Greenwood, A. Earnshaw, Chemistry of the Elements, Elsevier2012.
[3] W.W. Eckenfelder, Industrial water pollution control, McGraw-Hill1989.
[4] P. Patnaik, Handbook of inorganic chemicals, McGraw-Hill New York2003.
[5] J.-Y. Lin, Y.-J. Shih, P.-Y. Chen, Y.-H. Huang, Precipitation recovery of boron from aqueous solution by chemical oxo-precipitation at room temperature, Applied Energy 164 (2016) 1052-1058.
[6] C.-I. Lee, W.-F. Yang, C.-I. Hsieh, Removal of Cu (II) from aqueous solution in a fluidized-bed reactor, Chemosphere 57 (2004) 1173-1180.
[7] M. Al-Rashed, J. Wójcik, R. Plewik, P. Synowiec, A. Kuś, Multiphase CFD modeling: fluid dynamics aspects in scale-up of a fluidized-bed crystallizer, Chemical Engineering and Processing: Process Intensification 63 (2013) 7-15.
[8] G. Hofmann, Situation of plant construction in industrial crystallization-A process intensification, VDI BERICHTE 1901 (2005) 759.
[9] R. Perry, D. Green, Perry's Chemical Engineer's Handbook. 6th ed1984, New York: McGraw Hill.
[10] F. Salvatori, H. Muhr, E. Plasari, J.-M. Bossoutrot, Determination of nucleation and crystal growth kinetics of barium carbonate, Powder technology 128 (2002) 114-123.
[11] L.K. Wang, Y.-T. Hung, N.K. Shammas, Physicochemical treatment processes, Springer2005.
[12] P. Zhou, J.-C. Huang, A.W. Li, S. Wei, Heavy metal removal from wastewater in fluidized bed reactor, Water Research 33 (1999) 1918-1924.
[13] J.W. Patterson, H.E. Allen, J.J. Scala, Carbonate precipitation for heavy metals pollutants, Journal (Water Pollution Control Federation) (1977) 2397-2410.
[14] D. Kunii, O. Levenspiel, Fluidization engineering, Elsevier2013.
[15] P. Battistoni, A. De Angelis, M. Prisciandaro, R. Boccadoro, D. Bolzonella, P removal from anaerobic supernatants by struvite crystallization: long term validation and process modelling, Water research 36 (2002) 1927-1938.
[16] R. Aldaco, A. Garea, A. Irabien, Fluoride recovery in a fluidized bed: crystallization of calcium fluoride on silica sand, Industrial & engineering chemistry research 45 (2006) 796-802.
[17] J.P. Chen, H. Yu, Lead removal from synthetic wastewater by crystallization in a fluidized‐bed reactor, Journal of Environmental Science & Health Part A 35 (2000) 817-835.
[18] D. Guillard, A.E. Lewis, Nickel carbonate precipitation in a fluidized-bed reactor, Industrial & engineering chemistry research 40 (2001) 5564-5569.
[19] R. Aldaco, A. Garea, A. Irabien, Particle growth kinetics of calcium fluoride in a fluidized bed reactor, Chemical engineering science 62 (2007) 2958-2966.
[20] A. Kozik, N. Hutnik, K. Piotrowski, A. Matynia, Continuous reaction crystallization of struvite from diluted aqueous solution of phosphate (V) ions in the presence of magnesium ions excess, Chemical Engineering Research and Design 92 (2014) 481-490.
[21] O. Nipruk, Y.P. Pykhova, G. Chernorukov, N. Godovanova, R. Abrazheev, Heterogeneous equilibria in aqueous solutions of uranophosphates MII (PUO6) 2· nH2O (MII= Mg2+, Ca2+, Sr2+, Ba2+), Radiochemistry 53 (2011) 474-482.
[22] P.-C. Chen, S. Liu, C. Jang, R. Hwang, Y. Yang, J. Lee, J. Jang, Interpretation of gas–liquid reactive crystallization data using a size-independent agglomeration model, Journal of crystal growth 257 (2003) 333-343.
[23] C.-S. Chen, Y.-J. Shih, Y.-H. Huang, Remediation of lead (Pb (II)) wastewater through recovery of lead carbonate in a fluidized-bed homogeneous crystallization (FBHC) system, Chemical Engineering Journal 279 (2015) 120-128.
[24] A. Myerson, Handbook of industrial crystallization, Butterworth-Heinemann2002.
[25] J. Nývlt, O. Sohnel, M. Matuchova, M. Broul, The kinetics of industrial crystallization Elsevier, Amsterdam, 1985.
[26] M. Ohara, R.C. Reid, Modeling crystal growth rates from solution, Prentice Hall1973.
[27] P.-C. Chen, G. Cheng, M. Kou, P. Shia, P. Chung, Nucleation and morphology of barium carbonate crystals in a semi-batch crystallizer, Journal of crystal Growth 226 (2001) 458-472.
[28] A.G. Jones, Crystallization process systems, Butterworth-Heinemann2002
[29] L. Gibilaro, Fluidization dynamics, Butterworth-Heinemann2001.
[30] P. Nore, A. Mersmann, Batch precipitation of barium carbonate, Chemical Engineering Science 48 (1993) 3083-3088.
[31] N. Kubota, T. Sekimoto, K. Shimizu, Precipitation of BaCO 3 in a semi-batch reactor with double-tube gas injection nozzle, Journal of crystal growth 102 (1990) 434-440.
[32] S.-H. Yu, H. Cölfen, A.-W. Xu, W. Dong, Complex spherical BaCO3 superstructures self-assembled by a facile mineralization process under control of simple polyelectrolytes, Crystal growth & design 4 (2004) 33-37.
[33] H. Cölfen, S. Mann, Higher‐order organization by mesoscale self‐assembly and transformation of hybrid nanostructures, Angewandte Chemie International Edition 42 (2003) 2350-2365.
[34] A. Awonusi, M.D. Morris, M.M. Tecklenburg, Carbonate assignment and calibration in the Raman spectrum of apatite, Calcified tissue international 81 (2007) 46-52.
[35] P. Pasierb, S. Komornicki, M. Rokita, M. Rȩkas, Structural properties of Li 2 CO 3–BaCO 3 system derived from IR and Raman spectroscopy, Journal of molecular structure 596 (2001) 151-156.