簡易檢索 / 詳目顯示

研究生: 辜珮瑜
Ku, Pei-yu
論文名稱: 用於直接甲醇燃料電池中陽極之海膽狀PtRuSn觸媒的改良
Improvement on the performance of the anode catalyst in DMFC by using urchin-like PtRuSn/C catalysts
指導教授: 翁鴻山
Weng, Hung-Shan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 146
中文關鍵詞: 直接甲醇燃料電池碳奈米管海膽狀碳材觸媒電極
外文關鍵詞: Urchin-like carbon, Direct methanol fuel cell, Anodic catalyst., Carbon nanotubes
相關次數: 點閱:83下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以改良直接甲醇燃料電池(DMFC)電極觸媒為主要的課題,而以降低貴重金屬的用量並提高電化學活性為目標。觸媒是以碳黑(CB)與中孔碳(MC)為基材,在其上生長碳奈米管製成海膽狀碳材,再以它為擔体,製備含10 wt%Pt的Pt1Ru0.75Sn0.5/C觸媒並製成觸媒電極,探討碳基材種類、硝酸鐵含浸濃度、碳奈米管生長溫度及時間等因素,對碳基材上碳奈米管生長情形及製成觸媒電極後用於甲醇氧化的電催化活性的影響。此外也採取多次含浸法製備觸媒,藉以進一步提昇其效能。
    結果顯示:碳粒上有碳奈米管的生成,形成海膽狀碳材;以其為擔体製備的Pt1Ru0.75Sn0.5觸媒,都比以純粹碳粒為擔体製備者,有較高的電催化活性,碳奈米管不但可以改進碳材導電度,也當作連接碳粒間的橋樑,因此可以增進燃料電池的效能。
    對碳黑而言,在改變不同變因下,得到海膽狀碳黑(ULCB)最佳參數為以溼式含浸法含浸10000 ppm硝酸鐵溶液一次,在800 oC下,通入1 %乙炔持溫30分鐘。至於用於電催化甲醇氧化反應的觸媒則以臨濕含浸法含浸三次總量為10 % Pt於用鹽酸去鐵後的海膽狀碳黑上所製備的PtRuSn/Fe-free ULCB觸媒活性最佳,其效能比商用E-TEK (20 % PtRu)觸媒高出三到四成,可與Johnson-Matthey(20 % Pt、10% Ru)觸媒匹敵。

    The main objective of this study is to improve the performance of the anode catalyst in direct methanol fuel cell and to cut down the using amount of valuable metal. Carbon black (CB) and mesoporous carbon (MC) were employed as the substrates to prepare two kinds of urchin-like carbons with acetylene as the carbon source and iron as the catalyst. The influence of preparation methods and conditions, including the kind of substrates, impregnation concentration of Fe(NO3)3, temperature and time of carbon nanotube growth etc, on density and growth rate of the carbon nanotubes (CNTs) will de explored. The urchin-like carbons, as the supports, were then loaded with Pt (10 wt %), Ru and Sn to prepare PtRuSn/ULCB and PtRuSn/ULMC electrocatalysts, for methanol oxidation. The effects of using multiple impregnation in the preparation of urchin-like carbons and electrocatalysts on the performance of catalyst were also investigated.
    Experimental result reveal that carbon nanotubes grow on the carbon particles and forming urchin-like carbon (ULCB and ULMC), and the electrocatalytic activities of the catalysts with these urchin-like carbons as the supports for the electrooxidation of methanol are higher than those with CB and MC as the supports. CNTs in the urchin-like carbons play the role of connecting the carbon particles and can enhance the performance of the electrode in DMFC because of their high electrical conductivity.
    The best conditions for depositing carbon nanotubes on carbon black is impregnating carbon black with 10000 ppm Fe(NO3)3 solution once , followed by feeding with 1 % acetylene and heating up to 800 oC for 30 minutes. Electrocatalyst (containing 10 % Pt,4 % Ru and 3 % Sn) prepared by multiple impregnation with the electrocatalytic metals (Pt, Ru and Sn) on the Fe-free ULCB exhibits the highest performance, even has a higher electrocatalystic activity for methanol oxidation than the commercial E-TEK (20 wt% Pt and Ru) and Johnson Matthey(20 % Pt、10 % Ru) catalysts.

    摘要 III Abstract IV 目錄 VII 圖目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 研究動機 4 第二章 基本原理與文獻回顧 8 2.1直接甲醇燃料電池工作原理與構造[9] 8 2.1.1 流場板 10 2.1.2 氣體擴散層 10 2.1.3 觸媒層 10 2.1.4質子交換膜 10 2.2 陽極觸媒材料 13 2.2.1 Pt-Ru、Pt-Sn合金反應機構 14 2.2.2陽極觸媒發展方向 14 2.3 陰極觸媒材料 16 2.4 碳材料簡介 17 2.4.1 中孔碳 17 2.4.2 中孔洞材料之孔洞及比表面積分析 18 2.4.3 碳奈米管 21 2.5 觸媒製備 31 2.5.1 觸媒製備方式 31 2.5.2 影響的製備條件 33 2.6電池極化現象與極化曲線 35 2.6.1活性過電位(Activation overpotential) 35 2.6.2 質傳過電位(Mass transfer overpotential) 36 2.6.3 歐姆過電位(Ohmic overpotential) 36 2.7 線性掃描伏安法(Linear Sweep Voltammetry, LSV) 38 第三章 實驗部分 40 3.1 藥品與材料 40 3.2 儀器設備 41 3.3 實驗方法 42 3.3.1 碳材之前處理 43 3.3.2 海膽狀碳材的製備 43 3.3.3 PtRu/C與PtRuSn/C觸媒(含Pt 10 wt﹪)之製備步驟 44 3.3.4 電極觸媒層之製備 45 3.4 觸媒特性分析 46 3.4.1熱重量分析儀(TGA,Perkin Elmer 公司TGA 7型) 46 3.4.2表面吸附儀(Micromeritics公司, ASAP2010) 46 3.4.3 X光繞射(XRD)分析 46 3.4.4 掃瞄式電子顯微鏡(SEM,Scanning Electron Microscope)分析 47 3.4.5 穿透式電子顯微鏡(TEM,Transmitted Electron Microscope)分析 47 3.4.6 TEM粒徑分佈之計算 48 3.4.7 程溫還原(TPR) 48 3.4.8 原子吸收光譜(SensAA) 48 3.4.9 拉曼光譜 DLD 49 3.5 電化學分析 49 第四章 結果與討論 55 4.1 觸媒特性分析 55 4.1.1原子吸收光譜(AA) 55 4.1.2 程溫還原(TPR) 58 4.1.3 熱重損失分析(TGA) 59 4.1.4 等溫物理吸附分析-表面積與孔徑分布 64 4.1.5 拉曼(Raman)分析 67 4.1.6 XRD繞射分析 69 4.1.7 SEM分析 72 4.1.8 TEM分析 76 4.1.9 HR-TEM分析 95 4.2 觸媒電極之電化學活性測試 98 4.2.1 不同條件製備的海膽狀碳黑對電催化活性之影響 98 4.2.2 電催化金屬對電化學活性的影響 100 4.2.3 不同製備條件的海膽狀中孔碳對電催化活性之影響 101 第五章 結論 115 5.1結論 115 5.2未來研究方向與對實驗的建議 116 參考文獻 117 附錄一 128

    [1]鄭耀宗, 徐耀昇, “燃料電池技術進展的現況分析”, 節約能源論文發表會論文專輯, p.409 (1999).
    [2]許寧逸、顏溪成,”由碳能朝向氫能的燃料電池”, 科學發展, 367期, 6 (2003).
    [3]林昇佃, 余子隆, 張幼珍, 翁芳柏, 李碩仁, 林育才, 吳和生, 魏榮宗, 林修正, 賴子珍, 曾盛恕, 詹世弘, “燃料電池-新世紀能源”, 滄海書局 (2004初版).
    [4] J. Ding, Kwong-Yu Chan, J. Ren, Feng-Shou Xiao, “Platinum and platinum-ruthenium nanoparticles supported on ordered mesoporous carbon and their electrocatalytic performance fore fuel cell reactions”, Electrochimica Acta, 50, 3131(2005).
    [5] w. Chen, J. Zhao, J. Yang Lee, Z. Liu, “Microwave heated polyol synthesis of carbon nanotubes supported Pt nanoparticles for methanol electrooxidation”, Material Chemistry and Physics, 91, 124(2005).
    [6]李振彬, “直接甲醇燃料電池中陽極觸媒層效能之改良”, 國立成功大學化學工程學系碩士論文 (2005).
    [7]紀景發, “以混合碳材為PtRu/C觸媒擔體用於改良直接甲醇燃料電池中陽極觸媒層之效能”, 國立成功大學化學工程學系碩士論文 (2006).
    [8]張瓊瑤,” 添加錫或鎢及碳奈米管於鉑-釕觸媒中以提昇直接甲醇燃料電池陽極之效能”, 國立成功大學化學工程學系碩士論文 (2007).
    [9] N. Nakagawa, Y. Xiu, “Performance of a direct methanol fuel cell operated at atmospheric pressure”, J. Power Sources., 118, 248(2003).
    [10]黃鎮江, “燃料電池”, 金華科技圖書股份有限公司”,(2005).
    [11] Z. Ogumi, T. Kuroe, Z. I. Takehara, J. Electrochem. Soc., 132, 2601 (1985).
    [12] Z. Zhou, W. Zhou, S. Wang, G. Wang, L. Jiang, H. Li, G. Sun, Q. Xin, “Preparation of highly active 40 wt. % Pt/C cathode electrocatalysts for DMFC via different routes”, Catalysis Today, 93-95, 523-528 (2004).
    [13] W. J. Zhou, W. Z. Li, S.Q. Song, Z. H. Zhou, L. H. Jiang, G. Q. Sun, Q. Xin, K. Poulianitis, S. Kontou, P. Tsiakaras, “Bi- and tri-metallic Pt-based anode catalysts for direct ethanol fuel cells”, Journal of Power Sources, 131, 217 (2004).
    [14] A. J. Dickinson, L. P. L. Carrette, J. A. Collins, K. A. Friedrich, U. Stimming, “Performance of methanol oxidation catalysts with varying Pt:Ru ratio as a function of temperature”, J. Appl. Electrochemistry, 34 , 975 (2004).
    [15] T. Frelink, W. Visscher, J. A. R. van Veen, “On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt”, Surface Science, 335, 353 (1995).
    [16] J. H. Choi, K. W. Park, B. K. Kwon, Y. E. Sung, “Methanol Oxidation on Pt/Ru, Pt/Ni, and Pt/Ru/Ni Anode Electrocatalysts at Different Temperatures for DMFCs”, J. Electrochem. Soc., 150, A973 (2003).
    [17] J. Luo, M. M. Maye, N. N. Kariuki, L. Wang, P. Njoki,Y. Lin, M. Schadt, H. R. Naslund, C.-J. Zhong, “ Electrocatalytic oxidation of methanol: carbon-supported gold–platinum nanoparticle catalysts prepared by two-phase protocol ”, Catalysis Today, 99, 291 (2005).
    [18] M. Gotz, H. Wendt, “Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on methanol or reformate gas”, Electrochimica Acta., 43, 3637 (1998).
    [19] 葉長青, 王振熙, 第24屆台灣區觸媒與反應工程研討會 (2006).
    [20] W. J. Zhou, S. Q. Song, W. Z. Li, Z. H. Zhou, G. Q. Sun, Q. Xin, S. Douvartzides, P. Tsiakaras, “Direct ethanol fuel cells based on PtSn anodes:the effect of Sn content on the fuel cell performances”, Journal of Power Sources, 140, 50 (2005).
    [21] Z. Hou, B. Yi, H. Yu, Z. Lin, H. Zhang, “CO tolerance electrocatalyst of PtRu-HxMeO3/C (Me = W, Mo)made by composite support method”, J. Power Sources, 123, 116 (2003).
    [22] M. P. Ralph, T. R. Hogarth, Platinum Met. Rev., 46, 146 (2002).
    [23] Y. Takasu, T. Kawaguchi, W. Sugimoto, Y. Murakami, “Effects of the surface area of carbon support on the characteristics of highly-dispersed Pt-Ru particles as catalysts for methanol oxidation”, Electrochimica Acta., 48, 3861 (2003).
    [24] L. X. Yang, R. G. Allen, K. Scott, P. Christenson, S. Roy, “A comparative study of PtRu and PtRuSn thermally formed on titanium mesh for methanol electro-oxidation”, J. Power Sources, 137,257 (2004).
    [25] Bogdan Gurau, Rameshkrishnan Viswanathan, Renxuan Liu, Todd J. Lafrenz, Kevin L. Ley, and E. S. Smotkin, “Structural and Electrochemical Characterization of Binary, Ternary, and Quaternary Platinum Alloy Catalysts for Methanol Electro-oxidation “, J. Phys. Chem. B., 102, 9997 (1998).
    [26] Kyung-Won Park,a Jong-Ho Choi, Seol-Ah Lee, Chanho Pak, Hyuck Chang,and Yung-Eun Sung, “PtRuRhNi nanoparticle electrocatalyst for methanol electrooxidation in direct methanol fuel cell”, J. Catalysis, 224, 236 (2004).
    [27] J. Larminie et al., Fuel Cell Systems Explained 2nd, Wiley (2003).
    [28] C. S. Lin, M. R. Khan, S. D. Lin, “The preparation of Pt nanoparticles by methanol and citrate”, J. Colloid and Interface Science, 299, 678 (2006).
    [29] J. Prabhuram, X. Wang, C. L. Hui, I. M. Hsing, “Synthesis and characterization of surfactant-stabilized Pt/C nanocatalysts for fuel cell applications”, J. Phys. Chem., B 107, 11057 (2003).
    [30] Z. Liu, L. M. Gan, L. Hong, W. Chen, J. Y. Lee, “Carbon-supported Pt nanoparticles as catalysts for proton exchange membrane fuel cells”, J. Power Sources, 139, 73 (2005).
    [31]E. S. Steigerwalt, G. A. Deluga, C. M. Lukehart, “Pt-Ru/Carbon fiber nanocomposites:synthesis, characterization, and performance as anode catalysts of direct methanol fuel cells. A search for exceptional performance.”, J. Phys. Chem. B, 106, 760 (2002).
    [32] V. Baglio, A.S. Arico, A. Di Blasi, P. L. Antonucci, F. Nannetti, V. Tricoli and V. Antonucci, “Zeolite-based composite membranes for high temperature direct methanol fuel cells”, J. Appl. Electrochemistry., 35, 207 (2005).
    [33] Z. Chen , X. Qiu, B. Lu, S. Zhang,W. Zhu, L. Chen,”Synthesis of hydrous ruthenium oxide supported platinum catalysts for direct methanol fuel cells”, Electrochem. Commun., 7, 593 (2005).
    [34] J. H. Knox, B. Kaur, G. R. Millward, “Structure and performance of porous graphitic carbon in liquid chromatography”, J. Chromatogr., 352, 3 (1986).
    [35] R. Ryoo, S. H. Joo, S. Jun, “ Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated StructuralTransformation”, J. Phys. Chem. B., 103 (1999).
    [36] R. Ryoo, S. H. Joo, M. Kruk,M. Jaroniec, “ Ordered Mesoporous Carbons”, Adv. Mater., 13, 677 (2001).
    [37] S. H. Joo, S. J. Choi, I. Oh, J. Kwak,Z. Liu, O. Terasaki, R. Ryoo, “Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles”, Nature, 412, 169 (2001).
    [38] J.H. Nam , Y. Y. Jang , Y. U. Kwon , J. D. Nam ,”Direct methanol fuel cell Pt–carbon catalysts by using SBA-15 nanoporous templates”, Electrochem. Commun., 6, 737 (2004).
    [39] P. Kim, H. Kim, J. B. Joo, W. Kim, I. K. Song, J. Yi, “Preparation and application of nanoporous carbon templated by silica particle for use as a catalyst support for direct methanol fuel cell”, J. Power Sources., 145, 139 (2005).
    [40] G.G. Park, T.H. Yang, Y. G. Yoon, W.Y. Lee, C.S. Kim, ”Pore size effect of the DMFC catalyst supported on porous materials”, Inter. J. Hydrogen Energy., 28, 645 (2003).
    [41] V. Rao, P.A. Simonov b, E.R. Savinova, G.V. Plaksin , S.V. Cherepanova, G.N. Kryukova , U. Stimming , “The influence of carbon support porosity on the activity of PtRu/Sibunit anode catalysts for methanol oxidation”, J. Power Sources., 145, 178 (2005).
    [42] S. Brunauer, L. S. Deming, W. S. Deming and E. T. Teller, “On a theory of the van der waals adsorption of gases”, J. Am. Chem. Soc., 62, 1723 (1940).
    [43] G. Ertl, H. Knozinger and J. Weitkamp, “Handbook of Heterogeneous Catalysis”, 3, 1508 (1997).
    [44]T. W. Odaom, J. L. Huang, P. Kim. C. M. Lieber, J. Phys. Chem. B2000, 104, 2794.
    [45] “Electron diffraction and microscopy of nanotubes”, S Amelinckx et., al.1475-1477.
    [46] 成會明, 張勁燕, ”奈米碳管”, 五南圖書出版公司 (2004).
    [47]C. Journet, P. Bernier, Appl. Phys., A67, 1(1998).
    [48]T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, Chem. Phys. Lett, 234, 49(1995).
    [49]M. J. Yacaman, M. M. Yoshida, L. Rendon, J. G. Saniesteban, Appl. Phys. Lett., 62, 202(1993).
    [50] F. Rohmund, Lena K. L. Falk, Eleanor E.B. Campbell,”A simple method for the production of large arrays of aligned carbon nanotubes”, Chemical Physics Letters, 328,369 (20000).
    [51] P.J. Cao, D.L. Zhu, X.C. Ma, X.J. Bai,“The effect of substrate morphology on the formation of large-scale well-aligned carbon nanotube film”, Materials Chemistry and Physics, 97, 182(2006).
    [52] Yih-Ming Shyu, Franklin Chau-Nan Hong , ”Low-temperature growth and field emission of aligned carbon nanotubes by chemical vapor deposition”, Materials Chemistry and Physics, 72, 223 (2001).
    [53] T.S. Wonga, C.T. Wangb, K.H. Chena,_, L.C. Chenc, K.J. Mab
    “Carbon nanotube growth by rapid thermal process”, Diamond and Related Materials, 10, 1810 ( 2001).
    [54] E. Terrado, M Redrado, E. Munoz, W.K. Maser,A,M. Benito, M.T.Martinez, ”Aligned carbon nanotubes growm on alumina and quartz substrates by a simple thermal CVD process” ,Diamond & Related Materials, 15, 1059 (2006).
    [55] Yu-Hu Chung, Shyankay Jou, “Carbon nanotubes from catalytic pyrolysis of polypropylene” , Materials Chemistry and Physics, 92, 256 (2005).
    [56] J. Kong, A. M. Cassell, H. Dai, “Chemical vapor depositopn of methame for single-walled carbon nanotubes”,Chemical Physics Letters, 292, 567 (1998).
    [57] P. Navarro Lo´pez , I. Rodr´ıguez Ramos , A. Guerrero Ruizb, “A study of carbon nanotube formation by C2H2 decomposition on an iron based catalyst using a pulsed method”, Carbon, 41, 2509 (2003).
    [58]K. Hernadi, A Fonseca, J.B.Nagy, D. Bernaerts and A.A.Lucas,” Fe-catclyzed carbon nanotube formation”, Carbon, 34, 1249 (1996).
    [59] J. F. Colomer , C. Stephan b, S. Lefrant , G. Van Tendeloo , I. Willems , Z. Ko´nya a, A. Fonseca , Ch. Laurent , J. B.Nagy ,”Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition_CCVD/method”, Chemical Physics Letters, 317, 83(2000).
    [60] A. Zhang, C. Li, S. Bao, Q. Xu ,“A novel method of varying the diameter of carbon nanotubes formed on an Fe-supported Y zeolite catalyst”, Microporous and Mesoporous Materials, 29, 383(1999).
    [61] H. Huwe, M. Froba, “Iron (III) oxide nanoparticles within the pore system of mesoporous carbon CMK-1: intra-pore synthesis and characterization“ ,Microporous and Mesoporous Materials, 60, 151 (2003).
    [62] U. Schuchardt, R. Pereira, Carlos E.Z. Krahembuhl, Mauricio Rufo, Reginal Buffon, ”Synergistic effect of iron and copper oxides supported on silica in the room temperature oxidation of cyclihexane”, Applied CatalysisA: General, 131, 135 (1995).
    [63] C. Minchev , H. Huwe , Tanya Tsoncheva , Daniela Paneva , Momtchil Dimitrov , Ivan Mitov , Michael Froba ,“Iron oxide modified mesoporous carbons : Physicochemical and catalytic study “, Microporous and Mesoporous Materials, 81, 333(2005).
    [64] Y. Piao, K. An, Jaeyun Kim, Taekyung Yu and Taeghwan Hyeon, ” Sea urchin shaped carbon nanostructured materials: carbon nanotubes immobilized on hollow carbon spheres”, Journal of Materials Chemistry, 24 (2006).
    [65]C.T. Hseih, W.L. Huang, J.T.Lue,”The change from paramagnetic resonance to ferromagnetic resonance for iron nanoparticles made by the sol-gel method”, Journal of physics and chemistry of solid, 63, 733(2002),
    [66] M. Pérez-Cabero, I. Rodríguez-Ramos, and A. Guerrero-Ruíz ,” Characterization of carbon nanotubes and carbon nanofibers prepared by catalytic decomposition of acetylene in a fluidized bed reactor”, Journal of Catalysis, 215, 305(2003).
    [67]G. M. da Costa, E. De Grave, P. M .A. de Bakker, and R.E.Vandenberghe, ”Synthesis and characterization of some iron oxides by sol-gel method”, Journal of solid state chemistry, 113, 405(1994).
    [68] M. Shao, D. Wang, Guihua Yu, Bing Hu, Weichao Yu, Yitai Qian ,”The synthesis of carbon nanotubes at low temperature via carbon suboxide disproportionation”, Carbon, 42, 183(2004).
    [69] W. H. Lizcano-Valbuena, D. C. de Azevedo, E. R. Gonzalez, “Supported metal nanoparticles as electrocatalysts for low-temperature fuel cells”, Electrochimica Acta., 49, 1289 (2004).
    [70] T.C. Deivaraj and Jim Yang Lee, “Preparation of carbon-supported PtRu nanoparticles for direct methanol fuel cell applications – a comparative study”, J. Power Sources., 142, 43 (2005).
    [71] X. Zhang, K.Y. Chan , “Water-in-Oil Microemulsion Synthesis of Platinum-Ruthenium Nanoparticles, Their Characterization and Electrocatalytic Properties”,Chem. Mater., 15, 451 (2003).
    [72] Z. Liu, L. M. Gan, L. Hong, W. Chen, J. Y. Lee, “Carbon-supported Pt nanoparticles as catalysts for proton exchange membrane fuel cells”, Journal of Power Sources, 139, 73 (2005).
    [73] H. Tang, J. Chen, S. Yao, L. Nie, Y. Kuang, Z. Huang, D. Wang, Z. Ren, “Deposition and electrocatalytic properties of platinum on well-aligned carbon nanotube(CNT) arrays for methanol oxidation”, Materials Chemistry and Physics, 92, 548 (2005).
    [74] Z. He, J. Chen, D. Liu, H. Zhou, Y. Kuang, “Electrodeposition of Pt-Ru nanoparticles on catrbon nanotubes and their electrocatalytic properties for methanol electrooxidation”, Diamond and Related Materials, 13, 1764 (2004).
    [75] W. Li, C. Liang, W. Zhou, J. Qiu, Z. Zhou, G. Sun, Q. Xin, “Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of methanol fuel cells”, J. Phys. Chem. B, 107, 6292 (2003).
    [76] P. Kim, J. B. Joo, W. Kim, J. Kim, I. K. Song, J. Yi, “NaBH4-assisted ethylene glycol reduction for preparation of carbon-supported Pt catalyst for methanol electro-oxidation”, J. Power Sources, 160, 987 (2006).
    [77] P. Serp, M. Corrias, P. Kalck, “Carbon nanotubes and nanofibers in catalysis”, Applied Catalysis, 253, 337 (2003).
    [78] K. I. Han, J. S. Lee, S. O. Park, S. W. Lee, Y. W. Park, H. Kim, “Studies on the anode catalysts of carbon nanotube for DMFC”, Electrochimica Acta, 50, 791 (2004).
    [79] Z. Liu, X. Lin, J. Y. Lee, W. Zhang, M. Han, L. M. Gan, “Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells”, Langmuir, 18, 4054 (2002).
    [80] L. S. Sarma, T. D. Lin, Y. W. Tsai, J. M. Chen, B. J. Hwang, “Carbon-supported Pt-Ru catalysts prepared by the Nafion stabilized alcohol-reduction method for application in direct methanol fuel cells”, J. Power Sources, 139, 44 (2005).
    [81] E. Passalacqua, F. Lufrano, G. Squadrito, A. Patti, L. Giorgi, “Nafion content in the catalyst layer of polymer electrolyte fuel cells:effects on structure and performance”, Electrochimica Acta, 46, 799 (2001).
    [82] Y. T. Kho, S. Srinivasan, “Mass Transport Phenomens in Proton Exchange Membrane Fuel Cells Using O2/He,O2/Ar and O2/N2 Mixture Ⅱ Theoretical Analysis”, J. Electrochem.Soc., 141, 2089 (1994).
    [83]J. W. Snoeck, G. F. Froment, M. Fowles, “Filamentous carbon formation and gasification : Thermodynamics, driving force, nucleation, and steady-state growth”, Journal of catalysis 169, 240(1997).

    下載圖示 校內:2009-06-26公開
    校外:2009-06-26公開
    QR CODE