簡易檢索 / 詳目顯示

研究生: 徐俊偉
Hsu, Chun-Wei
論文名稱: 溶膠-凝膠法製備之分子模版高分子與其內部質傳行為
Molecularly Imprinted Polymer Prepared by Sol-gel Process and Its Interior Transport Behavior
指導教授: 楊明長
Yang, Ming-Chang
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 135
中文關鍵詞: 促進輸送現象溶膠-凝膠法有機-無機混成材料分子模印高分子
外文關鍵詞: facilitated transport, molecularly imprinted polymer, sol-gel, organic-inorganic hybrid
相關次數: 點閱:64下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的主軸是利用溶膠-凝膠法合成有機-無機混成分子模印高分子,分子模印高分子與模印分子之間的作用力是採用疏水性作用力。利用溶膠-凝膠法合成有機-無機混成分子模印高分子,溶膠的pH值為重要因素。以0.01 M鹽酸為觸媒製備的膽固醇模印高分子,擁有最低的孔體積與最高的模所造成的吸附增加值(13650 %)。此外有機-無機混成材料製備的分子模印高分子,雖然吸附量小於丙烯酸高分子材料製備的分子模印高分子,但是卻能夠降低非特異性吸附並提高模印效果。
    溶膠-凝膠法合成的有機-無機混成分子模印高分子,能夠促進模印分子在分子模印高分子內部的輸送,此一現象相信是固定載體的促進輸送現。雙酚A在雙酚A模印高分子薄膜內部的質傳速率(0.822 nmole/cm2.min)高於在非分子模印高分子薄膜內部的質傳速率(0.016 nmole/cm2.min)。此促進輸送的現象,可歸因於分子模印高分子的結合座與模印分子之間的作用。雙酚A模印高分子對雙酚A的吸附量改變,會造成雙酚A在雙酚A模印高分子薄膜內部的質傳速率改變。
    分子模印高分子對模印分子的促進輸送現象,也可從腎上腺素模印高分子電極對腎上腺素的感測現象中觀察到。腎上腺素模印高分子電極對腎上腺素的感測電流(0.071 mA/mM)高於非分子模印高分子電極的感測電流(0.008 mA/mM)。腎上腺素模印高分子結合座對促進輸送現象有重要的影響,當2-苯基乙胺佔據結合座會造成腎上腺素的感測電流突然衰退。
    本研究中,分子模印高分子對於模印分子有極佳的辨識能力。膽固醇模印高分子對於膽固醇的吸附量比其它固醇類荷爾蒙或維他命D3都高,分子的疏水性與結構決定膽固醇模印高分子對分子的吸附量。腎上腺素模印高分子電極對於腎上腺素也有良好的辨識能力,分子的結構、電性與苯環官能基都會影響分子在腎上腺素模印高分子電極上的相對應答值。

    In this study, a sol-gel method has been used to fabricate organic-inorganic hybrid molecularly imprinted polymers (MIPs) for application in polar solutions. Hydrophobic monomers were used as functional monomers to provide hydrophobic interaction in the polar solution. In the sol-gel system, the pH of sol solution was an important factor in fabricating the cholesterol imprinted polymers. The MIP had a larger pore volume with more non-specific binding of target molecule, when the formation of the polymer was catalyzed at a higher pH. For cholesterol-imprinted polymer, the largest imprinting-induced promotion of binding (IPB) value (13650 %) and lowest pore volume of the MIP was obtained with 0.01 M HCl in the sol-gel solution. Although the sol-gel procedure showed small amount of adsorption compared with acrylic polymer, it gave only a small amount of non-specific binding for both MIP and NIP when synthesized at low pH values.
    In addition to the ability of decreasing non-specific binding, the organic-inorganic hybrid MIPs showed facilitated transport toward template. Bisphenol A showed higher flux in the bisphenol A imprinted polymer (0.822 nmole/cm2.min) than in non-imprinted polymer (0.016 nmole/cm2.min). The phenomenon was believed due to the interaction between binding site and template and could be explained by the mechanism of facilitated transport in fixed-site carriers.
    The facilitated transport of template also could be observed in epinephrine imprinted polymer. The sensing current of epinephrine was higher in epinephrine imprinted polymer electrode (0.071 mA/mM) than in non-imprinted polymer electrode (0.008 mA/mM). The binding sites of epinephrine imprinted polymer played the major role in facilitated transport. The sensing current of epinephrine in epinephrine imprinted polymer electrode significantly decreased when 2-Phenethylamine was added into testing solution and occupied binding sites.
    In this study, MIPs showed high selectivity toward template. For cholesterol imprinted polymer, the amount of cholesterol adsorbed by cholesterol imprinted polymer was higher than cholecalciferol and other steroids in this study. Epinephrine imprinted polymer electrode showed good relative response toward epinephrine. The conformation, charge, and functional group of aromatic ring affected relative response of epinephrine imprinted polymer electrode toward epinephrine molecule.

    目錄 中文摘要…………………………………………………………… I 英文摘要…………………………………………………………… II 誌謝………………………………………………………………… IV 目錄………………………………………………………………… V 表目錄……………………………………………………………… IX 圖目錄……………………………………………………………… X 符號表……………………………………………………………… XIV Part I 導論 第一章 緒論…………………………………………………… 1 1.1 前言…………………………………………………… 1 1.1.1 分子模印技術發展過程……………………………… 1 1.1.2 膽固醇模印高分子…………………………………… 3 1.1.3 腎上腺素模印高分子………………………………… 4 1.1.4 雙酚A模印高分子與促進輸送現象…………………… 5 1.2 研究目的……………………………………………… 6 1.3 論文架構……………………………………………… 6 第二章 文獻回顧與原理……………………………………… 9 2.1 溶膠-凝膠法與分子模印高分子……………………… 9 2.1.1 溶膠-凝膠法的物性、化性與應用…………………… 9 2.1.2 有機-無機混成分子模印高分子……………………… 14 2.2 光學分析技術在分子模印高分子的應用…………… 21 2.2.1 螢光光譜……………………………………………… 21 2.2.2 紫外光/可見光光譜…………………………………… 22 2.2.3 紅外光光譜…………………………………………… 22 2.2.4 表面離子共振技術…………………………………… 24 2.2.5 化學發光……………………………………………… 25 2.3 電化學分析技術在分子模印高分子的應用………… 25 2.3.1 伏安法………………………………………………… 26 2.3.2 電流分析法…………………………………………… 26 2.3.3 電導度分析…………………………………………… 27 2.3.4 電容或阻抗分析……………………………………… 28 2.3.5 電位法………………………………………………… 32 2.3.6 化學或離子感測場效電晶體………………………… 32 2.4 薄膜內部的質傳現象………………………………… 32 2.4.1 妨礙滲透現象………………………………………… 32 2.4.2 促進輸送現象………………………………………… 34 2.4.3 促進輸送現象的模型………………………………… 37 2.5 吸附基本理論………………………………………… 40 2.5.1 等溫吸附曲線………………………………………… 40 2.5.2 BET等溫吸附模式……………………………………… 42 2.6 方波伏安法的理論…………………………………… 43 Part II 膽固醇模印高分子 第三章 膽固醇模印高分子之實驗材料與方法……………… 45 3.1 實驗藥品與儀器……………………………………… 45 3.2 (cholesteryl propylcarbamate)triethoxysilane的 製備……………………………………………………… 48 3.3 cholesteryl methacrylate的製備………………… 49 3.4 溶膠-凝膠法製備膽固醇模印高分子………………… 51 3.5 自由基起始法合成膽固醇模印高分子……………… 53 3.6 吸附測試……………………………………………… 54 第四章 膽固醇模印高分子之實驗結果與討論……………… 55 4.1 (cholesteryl propylcarbamate)triethoxysilane的 鑑定……………………………………………………… 55 4.1.1 紅外線光譜儀………………………………………… 55 4.1.2 核磁共振光譜………………………………………… 56 4.2 cholesteryl methacrylate的鑑定………………… 57 4.2.1 紅外線光譜儀………………………………………… 57 4.2.2 核磁共振光譜………………………………………… 58 4.3 溶膠pH值對分子模印高分子的吸附影響…………… 59 4.4 溶膠pH值對分子模印高分子結構的影響…………… 63 4.5 溶膠-凝膠法與自由基起始法合成分子模印高分子之 比較…………………………………………………… 68 4.6 膽固醇模印高分子的選擇性………………………… 71 Part III 腎上腺素模印高分子 第五章 腎上腺素模印高分子之實驗材料與方法………… 76 5.1 實驗藥品與儀器……………………………………… 76 5.2 ITO電極的前處理……………………………………… 79 5.3 分子模印高分子薄膜電極的製備…………………… 79 5.4 電流分析法實驗流程………………………………… 81 5.5 方波伏安法實驗流程………………………………… 81 第六章 腎上腺素模印高分子之實驗結果與討論…………… 83 6.1 腎上腺素模印高分子電極特性…………………… 83 6.1.1 腎上腺素模印高分子電極的膜厚…………………… 83 6.1.2 腎上腺素模印高分子電極清洗前後的差異………… 84 6.1.3 功能性單體含量對吸附的影響……………………… 88 6.2 分子模印高分子電極的感測行為…………………… 89 6.3 分子模印高分子的結合座對質傳的影響…………… 93 6.4 分子模印高分子電極的選擇性測試………………… 96 Part IV 雙酚A模印高分子 第七章 雙酚A模印高分子之實驗材料與方法………………… 99 7.1 實驗藥品與儀器……………………………………… 99 7.2 分子模印高分子薄膜的製備………………………… 101 7.3 分子模印高分子顆粒的製備………………………… 104 7.4 分子模印高分子薄膜內部的質傳實驗……………… 104 7.5 吸附測試……………………………………………… 106 第八章 雙酚A模印高分子之實驗結果與討論………………… 107 8.1 雙酚A模印高分子薄膜的特性………………………… 107 8.2 模印對於雙酚A在高分子薄膜內部質傳的影響……… 109 8.3 溶液組成對於薄膜內部質傳的影響………………… 114 8.4 不同分子在雙酚A模印高分子薄膜內部的質傳現… 117 Part V 綜合討論 第九章 綜合討論……………………………………………… 119 第十章 結論…………………………………………………… 121 第十一章 建議研究方向………………………………………… 123 參考文獻…………………………………………………………… 124 附錄一……………………………………………………………… 133

    [1] B. Sellergren, Molecularly imprinted polymers: man-made mimics of antibodies and their applications in analytical chemistry, Elsevier, Amsterdam, 2001.
    [2] G. Wulff and A. Sarhan, Angew. Chem. Int. Ed., 11 (1972) 341.
    [3] R. A. Bartsch, M. Maeda, Molecular and ionic recognition with imprinted polymers, American Chemical Society, Washingtion, DC, 1998.
    [4] A.G. Mayes and M.J. Whitcombe, Adv. Drug Deliver. Rev., 57 (2005) 1742.
    [5] B. Sellergren, TrAC-Trend. Anal. Chem., 16 (1997) 310.
    [6] X. Jiang, N. Jiang, H. Zhang, and M. Liu, Anal. Bioanal. Chem., 389 (2007) 355.
    [7] M. C. Blanco-Lopez, M. J. Lobo-Castanon, A. J. Miranda-Ordieres, P. Tunon-Blanco, TrAC, 23 (2004) 36.
    [8] K. Haupt, K. Mosbach, Chem. Rev., 100 (2000) 2495.
    [9] M. J. Whitcombe, M. E. Rodriguez, P. Villar, E. N. Vulfson, J. Am. Chem. Soc., 117 (1995) 7105.
    [10] C. C. Hwang, W. C. Lee, J. Chromatogr. A, 962 (2002) 69.
    [11] A. Kugimiya, Y. Kuwada, T. Takeuchi, J. Chromatogr. A, 938 (2001) 131.
    [12] K. Sreenivasan, J. Appl. Polym. Sci., 68 (1998) 1863.
    [13] H. Dong, A.-J. Tong, L.-D. Li, Spectrochim. Acta Part A, 59 (2003) 279.
    [14] P. Wallimann, T. Marti, A. Furer, and F. Diederich, Chem. Rev., 97 (1997) 1567
    [15] T. Hishiya, M. Shibata, M. Kakazu, H. Asanuma, M. Komiyama, Macromolecules, 32 (1999) 2265.
    [16] H. Asanuma, T. Hishiya, M. Komiyama, Adv. Mater., 12 (2000) 1019.
    [17] B. Sellergren, J. Wieschemeyer, K.-S. Boos, D. Seidel, Chem. Mater., 10 (1998) 4037.
    [18] D. Voet and J. G. Voet, Biochemistry, 3rd ed., J. Wiley & Sons, Hoboken, 2004.
    [19] T. M. Devlin, Textbook of Biochemistry with Clinical Correlations, 4th ed., Wiley, New York, 1997.
    [20] Y.-X. Sun, S.-F. Wang, X.-H. Zhang, and Y.-F. Huang, Sens. Actuator B-Chem., 113 (2006) 156.
    [21] J. Li and X.-Q. Lin, Anal. Chim. Acta, 596 (2007) 222.
    [22] M. Zhou, L.-P. Guo, Y. Hou, and X.-J. Peng, Electrochim. Acta, 53 (2008) 4176.
    [23] S. Shahrokhian, M. Ghalkhani, and M. K. Amini, Sens. Actuator B-Chem., 137 (2009) 669.
    [24] H. E. Bouhouti, I. Naranjo-Rodriguez, J. L. H. D. Cisneros, M. Elkaoutit, K. R. Temsamani, D. Bouchta, and L. M. C. Aguilera, Talanta, 79 (2009) 22.
    [25] J. Du, L. Shen, and J. Lu, Anal. Chim. Acta, 489 (2003) 183.
    [26] S. A. Piletsky, E. V. Piletska, B. Chen, K. Karim, D. Weston, G. Barrett, P. Lowe, and A. P.F. Turner, Anal. Chem., 72 (2000) 4381.
    [27] S. A. Piletsky, E. V. Piletska, A. Bossi, K. Karim, P. Lowe, and A. P.F. Turner, Biosens. & Bioelectron., 16 (2001) 701.
    [28] M. C. Blanco-Lopez, S. Gutierrez-Fernandez, M. J. Lobo-Castanon, A. J. Miranda-Ordieres, P. Tunon-Blanco, Anal. Bioanal. Chem., 378 (2004) 1922.
    [29] M.-J. Syu, T.-C. Chiu, C.-Y. Lai, and Y.-S. Chang, Biosens. Bioelectron., 22 (2006) 550.
    [30] A. V. Krishnan, P. Stathis, S. F. Permuth, L. Tokes, and D. Feldman, Endocrinology, 132 (1993) 2279.
    [31] K. W. Gaido, L. S. Leonard, S. Lovell, J. C. Gould, D. Babai, C. J. Portier, and D. P. McDonnell, Toxicol. Appl. Pharmacol., 143 (1997) 205.
    [32] K. Takeda and T. Kobayashi, Sci. Technol. Adv. Mater., 6 (2005) 165.
    [33] M. Kawaguchi, Y. Hayatsu, H. Nakata, Y. Ishii, R. Ito, K. Saito, and H. Nakazawa, Anal. Chim. Acta, 539 (2005) 83.
    [34] X. Jiang, W. Tian, C. Zhao, H. Zhang, and M. Liu, Talanta, 72 (2007) 119.
    [35] T. Ikegami, W.-S. Lee, H. Nariai, and T. Takeuchi, Anal. Bioanal. Chem., 378 (2004) 1898.
    [36] T. Ikegami, T. Mukawa, H. Nariai, and T. Takeuchi, Anal. Chim. Acta, 504 (2004) 131.
    [37] D. K. Alexiadou, N. C. Maragou, N. S. Thomaidis, G. A. Theodoridis, and M. A. Koupparis, J. Sep. Sci., 31 (2008) 2272.
    [38] C. Zhao, B. Yu, B. Qian, Q. Wei, K. Yang, and A. Zhang, J. Membrane Sci., 310 (2008) 38.
    [39] G. Kickelbick, Hybrid materials :synthesis, characterization, and applications, Wiley-VCH, Weinhem, 2007.
    [40] C. J. Brinker, and G. W. Scherer, Sol-Gel Science: the Physics and Chemistry of Sol-Gel Processing, Academic Press, Boston, 1990.
    [41] R. Gupta and A. Kumar, Biotechnol. Adv., 26 (2008) 533.
    [42] O. Lev, M. Tsionsky, L. Rabinovich, V. Glezer, S. Sampath, I. Pankratov, and J. Gun, Anal. Chem, 67 (1995) A22.
    [43] Z. Zhang, Y. Long, L. Nie, and S. Yao, Biosens. Bioelectron., 21 (2006) 1244.
    [44] A. Katz, M. E. Davis, Nature, 403 (2000) 286.
    [45] A. L. Graham, C. A. Carlson, and P. L. Edmiston, Anal. Chem., 74 (2002) 458.
    [46] C. D. Ki, C. Oh, S.-G. Oh, J. Y. Chang, J. Am. Chem. Soc., 124 (2002) 14838.
    [47] S. Marx and A. Zaltsman, Intern. J. Environ. Anal. Chem., 83 (2003) 671.
    [48] S. Marx, A. Zaltsman, I. Turyan, and D. Mandler, Anal. Chem., 76 (2004) 120.
    [49] M. Fujiwara, M. Nishiyama, I. Yamamura, S. Ohtsuki, and R. Nomura, Anal. Chem., 76 (2004) 2374.
    [50] A. Fernandez-Gonzalez, R. B. Laino, M. E. Diaz-Garcia, L. Guardia, and A. Viale, J. Chromatogr. B, 804 (2004) 247.
    [51] S. Fireman-Shoresh, I. Turyan, D. Mandler, D. Avnir, and S. Marx, Langmuir, 21 (2005) 7842.
    [52] S. Marx, Z. Liron, Chem. Mater., 13 (2001) 3624.
    [53] W. Cummins, P. Duggan, and P. Mcloughlin, Anal. Chim. Acta, 542 (2005) 52.
    [54] P. J. Skrdla, M. Shnayderman, L. Wright, and T. P. O’Brien, J. Non-cryst. Solids, 352 (2006) 3302.
    [55] O. Y. F. Henry, D. C. Cullen, and S. A. Piletsky, Anal. Bioanal. Chem., 382 (2005) 947.
    [56] D. Kriz, O. Ramstrom, A. Svensson, and K. Mosbach, Anal. Chem., 67 (1995) 2142.
    [57] R. Levi, S. McNiven, S. A. Piletsky, S.-H. Cheong, K. Yano, and I. Karube, Anal. Chem., 69 (1997) 2017.
    [58] J. L. Suarez-Rodriguez, and M. E. Diaz-Garcia, Biosens.Bioelectron., 16 (2001) 955.
    [59] M. E. Byrne, E. Oral, J. Z. Hilt, and N. A. Peppas, Polym. Advan. Technol., 13 (2002) 798.
    [60] E. Benito-Pena, M. C. Moreno-Bondi, S. Aparicio, G. Orellana, J. Cederfur, and M. Kempe, Anal. Chem., 78 (2006) 2019.
    [61] P. Turkewitsch, B. Wandelt, G. D. Darling, and W. S. Powell, Anal. Chem., 70 (1998) 2025.
    [62] A. L. Jenkins, O. M. Uy, and G. M. Murray, Anal. Chem., 71 (1999) 373.
    [63] J. Matsui, M. Higashi, and T. Takeuchi, J. Am. Chem. Soc., 122 (2000) 5218.
    [64] M. K.-P. Leung, C.-F. Chow, and M. H.-W. Lam, J. Mater. Chem., 11 (2001) 2985.
    [65] S. Gao, W. Wang, and B. Wang, Bioorg. Chem., 29 (2001) 308.
    [66] T. Takeuchi, T. Mukawa, J. Matsui, M. Higashi, and K. D. Shimizu, Anal. Chem., 73 (2001) 3869.
    [67] H. Kubo, H. Nariai, and T. Takeuchi, Chem. Commun., (2003) 2792.
    [68] S. H. Cheong, S. McNiven, A. Rachkov, R. Levi, K. Yano, and I. Karube, Macromolecules, 30 (1997) 1317.
    [69] N. Perez, M. J. Whitcombe, E. N. Vulfson, J. Appl. Polym. Sci., 77 (2000) 1851.
    [70] K. Sreenivasan, Polym. Int., 42 (1997) 169.
    [71] C. C. Huval, M. J. Bailey, W. H. Braunlin, S. R. Holmes-Farley, W. H. Mandeville, J. S. Petersen, S. C. Polomoscanik, R. J. Sacchiro, X. Chen, and P. K. Dhal, Marcomolecules, 34 (2001) 1548.
    [72] M. A. Gore, R. N. Karmalkar, and M. G. Kulkarni, J. Chromatogr. B, 804 (2004) 211.
    [73] W. M. Mullett, P. Martin, and J. Pawliszyn, Anal. Chem., 73 (2001) 2383.
    [74] S.-H. Cheong, A. E. Rachkov, J.-K. Park, K. Yano, and I. Karube, J. Polym. Sci. Pol. Chem., 36 (1998) 1725.
    [75] A. E. Rachkov, S.-H. Cheong, A. V. El’skaya, K. Yano, and I. Karube, Polym. Adv. Technol., 9 (1998) 511.
    [76] D. J. Duffy, K. Das, S. L. Hsu, J. Penelle, V. M. Rotello, and H. D. Stidham, J. Am. Chem. Soc., 124 (2002) 8290.
    [77] H. Kim and D. A. Spivak, J. Am. Chem. Soc., 125 (2003) 11269.
    [78] P. Li, Y. Huang, J. Hu, C. Yuan, and B. Lin, Sensors, 2 (2002) 35.
    [79] K. Taniwaki, A. Hyakutake, T. Aoki, M. Yoshikawa, M. D. Guiver, and G. P. Robertson, Anal. Chim. Acta, 489 (2003) 191.
    [80] M. Yoshikawa, M. D. Guiver, and G. P. Robertson, J. Appl. Polym. Sci., 110 (2008) 2826.
    [81] S.-C. Huang, G.-B. Lee, F.-C. Chien, S.-J. Chen, W.-J. Chen, and M.-C. Yang, J. Micromech. Microeng., 16 (2006) 1251.
    [82] K. Haupt, React. Funct. Polym., 41 (1999) 373.
    [83] I. Surugiu, L. Ye, E. Yilmaz, A. Dzgoev, B. Danielsson, K. Mosbach, and K. Haupt, Analyst, 125 (2000) 13.
    [84] I. Surugiu, J. Svitel, L. Ye, K. Haupt, B. Danielsson, Anal. Chem., 73 (2001) 4388.
    [85] R. Makote and M. M. Collinson, Chem. Mater., 10 (1998) 2440.
    [86] S. Kroger, A. P. F. Turner, K. Mosbach, and K. Haupt, Anal. Chem., 71 (1999) 3698.
    [87] S. A. Piletsky, E. V. Piletskaya, A. V. Elgersma, K. Yano, and I. Karube, Biosens. Bioelectron., 10 (1995) 959.
    [88] S. A. Piletsky, E. V. Piletskaya, T. L. Panasyuk, A. V. El’skaya, R. Levi, I. Karube, and G. Wulff, Macromolecules, 31 (1998) 2137.
    [89] T. A. Sergeyeva, S. A. Piletsky, A. A. Brovko, E. A. Slinchenko, L. M. Sergeeva, T. L. Panasyuk, and A. V. El’skaya, Analyst, 124 (1999) 331.
    [90] T. A. Sergeyeva, S. A. Piletsky, A. A. Brovko, E. A. Slinchenko, L. M. Sergeeva, and A. V. El’skaya, Anal. Chim. Acta, 392 (1999) 105.
    [91] T. L. Panasyuk, V. M. Mirsky, S. A. Piletsky, and O. S. Wolfbeis, Anal. Chem., 71 (1999) 4609.
    [92] Z. Cheng, E. Wang, and X. Yang, Biosens. Bioelectron., 16 (2001) 179.
    [93] H. Liao, Z. Zhang, H. Li, L. Nie, and S. Yao, Electrochim. Acta, 49 (2004) 4101.
    [94] J.-L. Gong, F.-C. Gong, Y. Kuang, G.-M. Zeng, G.-L. Shen, and R.-Q. Yu, Anal. Bioanal. Chem., 379 (2004) 302.
    [95] K. Liu, W.-Z. Wei, J.-X. Zeng, X.-Y. Liu, and Y.-P. Gao, Anal. Bioanal. Chem., 385 (2006) 724.
    [96] T. L. Delaney, D. Zimin, M. Rahm, D. Weiss, O. S. Wolfbeis, and V. M. Mirsky, Anal. Chem., 79 (2007) 3220.
    [97] V. M. Mirsky, T. Hirsch, S. A. Piletsky, and O. S. Wolfbeis, Angew. Chem. Int. Ed., 38 (1999) 1108.
    [98] N. Sallacan, M. Zayats, T. Bourenko, A. B. Kharitonov, and I. Willner, Anal. Chem., 74 (2002) 702.
    [99] R. S. Hutchins and L. G. Bachas, Anal. Chem., 67 (1995) 1654.
    [100] M. Lahav, A. B. Kharitonov, O. katz, T. Kunitake, and I. Willner, Anal. Chem., 73 (2001) 720.
    [101] M. Lahav, A. B. Kharitonov, and I. Willner, Chem. Eur. J., 7 (2001) 3992.
    [102] S. A. Piletsky, T. L. Panasyuk, E. V. Piletskaya, I. A. Nicholls, and M. Ulbricht, J. Membrane Sci., 157 (1999) 263.
    [103] M. Yoshikawa, J.-I. Izumi, T. Kitao, S. Koya, and S. Sakamoto, J. Membrane Sci., 108 (1995) 171.
    [104] R. D. Noble, C. A. Koval, and J. J. Pellegrino, Chem. Eng. Prog., 85 (1989) 58.
    [105] E. Tsuchida, H. Nishide, M. Ohyanagi, and H. Kawakami, Macromolecules, 20 (1987) 417.
    [106] R. D. Noble, J. Membrane Sci., 60 (1991) 297.
    [107] R. D. Noble, J. Membrane Sci., 75 (1992) 121.
    [108] H. Nishide, Y. Tsukahara, and E. Tsuchida, J. Phys. Chem. B, 102 (1998) 8766.
    [109] C. Su, K. Kuraoka, and T. Yazawa, J. Sol-Gel Sci. Techn., 33 (2005) 327
    [110 M. Shoji, K. Oyaizu, and H. Nishide, Polymer, 49 (2008) 5659.
    [111] N. Preethi, H. Shinohara, and H. Nishide, React. Funct. Polym., 66 (2006) 851.
    [112] T. Suzuki, H. Yasuda, H. Nishide, X. S. Chen, and E. Tsuchida, J. Membrane Sci., 112 (1996) 155.
    [113] B. B. Lakshmi and C. R. Martin, Nature, 388 (1997) 758.
    [114] S. B. Lee, D. T. Mitchell, L. Trofin, T. K. Nevanen, H. Soderlund, and C. R. Martin, Science, 296 (2002) 758.
    [115] J. Mathew-Kortz and K. J. Shea, J. Am. Chem. Soc., 118 (1996) 8154.
    [116] J. M. Hong, P. E. Anderson, J. Qian, and C. R. Martin, Chem. Mater., 10 (1998) 1029.
    [117] C. Zhao, B. Yu, B. Qian, Q. Wei, K. Yang, and A. Zhang, J. Membrane Sci., 310 (2008) 38.
    [118] S. Brunauer, The Adsorption of Gases and Vapor, Princeton University, Princeton, 1943.
    [119] V. Alfredsson, M. W. Anderson, Chem. Mater., 8 (1996) 1141.
    [120] A. J. Bard and L. R. Faulkner, Electrochemical Methods :Fundamentals and Applications, 2nd ed., John Wiley, New York, 2001.
    [121] W. Steglich and G. Hofle, Angew. Chem. Internat. Edit., 8 (1969) 981.
    [122] B. Neises and W. Steglich, Angew. Chem. Int. Ed. Eng., 17 (1978) 522.
    [123] A. Hassner and V. Alexanian, Tetrahedron Lett., 46 (1978) 4475.
    [124] M. Milolajczyk and P. Kielbasinski, Tetrahedron, 37 (1981) 233.
    [125] L. W. Kelts, N. J. Effinger, and S. M. Melpolder, J. Non-cryst. Solids, 83 (1986) 353.
    [126] J. C. Pouxviel, J. P. Boilot, J. C. Beloeil, and J. Y. Lallemand, J. Non-cryst. Solids, 89 (1987) 345.
    [127] L. Guardia, R. Badia-Laino, M. E. Diaz-Garcia, C. O. Ania, J. B. Parra, Biosens. Bioelectron., 23 (2008) 1101.
    [128] G. F. Gibbons, K. A. Mitropoulos, and N. B. Myant, Biochemistry of Cholesterol, Elsevier Biomedical Press, New York, 1982.
    [129] C. Baggiani, L. Anfossi, P. Baravalle, C. Giovannoli, and G. Giraudi, Anal. Bioanal. Chem., 389 (2007) 413.
    [130] A. Pyka and M. Babuska, J. Liq. Chromatogr. R. T., 29 (2006) 1891.
    [131] P. Westerhoff, Y. Yoon, S. Synder, and E. Wert, Environ. Sci. Technol., 39 (2005) 6649.
    [132] 何敏夫,臨床生化學,合記圖書出版社, 1990.
    [133] http://www.medscape.com/viewarticle/589256_7
    [134] P. R. Roy, T. Okajima, and T. Ohsaka, Bioelectrochemistry, 59 (2003) 11.
    [135] S.-M. Chen and K.-T. Peng, J. Electroanal. Chem., 547 (2003) 179.
    [136] M. D. Hawley, S. V. Tatawawadi, S. Piekarski, and R. N. Adams, J. Am. Chem. Soc., 89 (1967) 447.
    [137] M. Yoshikawa, J. Izumi, T. Kitao, and S. Sakamoto, Polym. J., 29 (1997) 205.

    下載圖示 校內:2010-08-10公開
    校外:2014-08-10公開
    QR CODE