簡易檢索 / 詳目顯示

研究生: 陳怡蒨
Chen, Yi-Chien
論文名稱: 以阻抗匹配及代理模型優化離子推進系統
Advanced Optimization of Ion Propulsion via Impedance Matching & Surrogate Modeling
指導教授: 李約亨
Li, Yueh-Heng
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程國際碩博士學位學程
International Master/Doctoral Degree Program on Energy Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 145
中文關鍵詞: 電力推進離子推進器代理模型Kriging 模型
外文關鍵詞: Electric propulsion, Ion thruster, RPA (Retarding Potential Analyzer), Surrogate Model, Kriging Model
相關次數: 點閱:46下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著5G技術的快速發展,近幾十年來對衛星的需求急劇增加。在這些太空技術中,電力推進系統(Electric Propulsion)被譽為當今太空產業的舵手,將引領吾人探索深空(Deep Space)之秘。作為電力推進家族的一員,離子推進器以其高比衝、長壽命和便於調整體積之特性證實了它的研究價值。雖然人類已開發出多種離子推進器,但對於其設計方法之研究則相對稀少。本研究以射頻電網式離子推進器(RF Gridded Ion Thruster)做為範例,分析其推進器之性能表現以及採用代理模型等數值計算方法來獲得推力性能隨設計參數變化的規律。幾個參數被分類和量化以確定對推力性能的影響。研究結果表明,在4 sccm 之氬氣質量流率、2500 V的加速電網電壓以及40 W 射頻功率下,離子推進器可以實現1.9 mN的推力、1649.5 s的比衝值和 48% 的推力效率,符合設計需求。在點火成功的基礎上,此原型驗證了代理模型優化的有效性,可為往後離子推進器研究提供一些技術指導。

    With the rapid development of 5G technology, the demand for satellites has been increasing drastically in recent decades. Among these space techniques, electric propulsions (EP) are hailed as the helmsman of the space industry that leads us to a place where “the universe” is the limit — deep space exploration. As a member of the EP family, the ion thruster has proved its academic values due to its high specific impulse, enduring lifetime, and adaptable scaling characteristics. While multiple kinds of ion thrusters have been investigated extensively, the scaling design methodology is relatively unexplored. This paper studies the performance of a specific species of an ion thruster: RF gridded ion thruster and focuses on the optimization approaches. Numerical calculation methods such as surrogate modeling are used to obtain the law that the thrust characteristics vary with the design parameters. Several parameters are categorized and quantified to ascertain the influence on the thrust performance. The findings suggest that with the argon mass flow rate of 4 sccm, the acceleration grid voltage of 2500 V, and the RF power of 40 W, the ion thruster can achieve a thrust of 1.9 mN, a specific impulse of 1649.5 s, and a thrust efficiency of 48 %, which meets the design requirements. Based on the ignition success, the prototype verifies the effectiveness of the surrogate modeling, which can be a guideline for further research.

    摘要 I ABSTRACT II 第一章 緒論與文獻回顧 III 第二章 實驗設置與方法 IV 第三章 電漿放電之穩定 V 第四章 推進器優化與實驗結果 VI 第五章 結論 VII 致謝 VIII ACKNOWLEDGEMENTS X CONTENTS XIII LIST OF FIGURES XVIII LIST OF TABLES XXIV NOMENCLATURE XXV CHAPTER 1 INTRODUCTION & LITERATURE REVIEW 1-1 PREFACE 1 1-2 INTRODUCTION TO ELECTRIC PROPULSIONS 2 1-2-1 ElectroThermal Propulsions 3 1-2-2 ElectroStatic Propulsions 7 1-2-3 ElectroMagnetic Propulsions 9 1-2-4 The Optimization of Electric Propulsions 11 1-3 LITERATURE REVIEW OF ION THRUSTERS 12 1-3-1 Development of Ion Thrusters 12 1-3-2 Plasma Sources 14 1-3-3 Ion Optics 20 1-3-4 The Current Research of Ion Thrusters 26 1-4 OPTIMIZATION METHODS 27 1-4-1 The Optimization of Ion Thrusters 27 1-4-2 Important Parameters & Metrics for Performance 30 1-4-3 Surrogate-Based Analysis & Optimization (SBAO) 33 1-5 MOTIVATION & PURPOSE 35 1-6 DISSERTATION STRUCTURE 36 CHAPTER 2 EXPERIMENTAL SETUP & METHODOLOGY 2-1 PLASMA BEHAVIORS & ELECTRIC DISCHARGE REGIME 37 2-2 ION THRUSTER SYSTEM 41 2-2-1 Vacuum Chamber & Propellant Feeding System 42 2-2-2 RF Power System & Impedance Matching Mechanism 44 2-2-3 Discharge Chamber & Coils 46 2-2-4 Acceleration Grids & Neutralizer 46 2-3 DIAGNOSTIC SYSTEMS: LANGMUIR PROBE & RETARDING POTENTIAL ANALYZER (RPA)48 2-3-1 Theory of Langmuir Probes 48 2-3-2 Double Probe Measurement 54 2-3-3 Theory of RPA 55 2-3-4 Design of Gridless RPA 62 2-3-5 Comparisons of Double Probe & RPA 66 2-4 OPTIMIZATION METHOD 67 2-4-1 Kriging Model ─ Gaussian Process 69 2-4-2 Infill Criterion 70 2-5 OPERATIONAL PROCEDURE 71 CHAPTER 3 STABILIZATION OF PLASMA DISCHARGE 3-1 FUNDAMENTAL OF INDUCTIVELY COUPLED PLASMA 72 3-2 IGNITION PROBLEM OF THE THRUSTER 74 3-3 POWER TRANSMISSION APPROACH 74 3-3-1 Impedance Matching Circuit 74 3-3-2 RF ElectroMagnetic Model 78 3-3-3 Impedance of the Plasma alone 84 3-3-4 RF Transformer Model 86 3-3-5 Power Transfer Efficiency 89 3-4 SOLENOID DESIGN 89 3-4-1 Theoretical values of the coil inductance 89 3-4-2 Impedance Measurement of the coils 92 3-5 PRESSURE ACCUMULATION PROBLEM FROM THE CHAMBER 94 3-5-1 Original Discharge Chamber 95 3-5-2 Principle of Discharge Chamber Design 96 3-5-3 New Design & Testing 101 3-6 SUMMARY OF POSSIBLE OPTIMIZATION PARAMETERS 105 CHAPTER 4 OPTIMIZATION VIA SURROGATE MODELING 4-1 SAMPLING METHODS 106 4-1-1 Random Sampling 107 4-1-2 Latin Hypercube Sampling (LHS) 107 4-1-3 Orthogonal Sampling 109 4-2 SCALING LAWS OF RF ION THRUSTERS 110 4-3 OBTAINMENT OF INPUT VALUES 115 4-3-1 Predicament of Thrust Measurement 117 4-3-2 Alternative Measurement Approach 117 4-3-3 Estimation of Thruster Performance 118 4-4 SIMULATIONS VIA KRIGING MODEL 120 4-4-1 Kriging Model Construction 121 4-4-2 Kriging Prediction 122 4-4-3 Explanation of Kriging Model 124 4-5 OPTIMIZATION OF ION THRUSTERS 126 4-5-1 Enhancement of the previous study 126 4-5-2 Comparison with the literature 127 CHAPTER 5 CONCLUSIONS AND FUTURE WORK BIBLIOGRAPHY & REFERENCES 132

    [1] Romei F, Grubisic A, Gibbon D, Lane O, Herfort R, Roberts G. A Thermo-Fluidic Model for a Low Power Xenon Resistojet2015.
    [2] Wang H-X, He Q-S, Murphy AB, Zhu T, Wei F-Z. Numerical Simulation of Nonequilibrium Species Diffusion in a Low-Power Nitrogen–Hydrogen Arcjet Thruster. Plasma Chemistry and Plasma Processing. 2017;37:877-95.
    [3] Keidar M, Zhuang T, Shashurin A, Teel G, Chiu D, Lukas J, et al. Electric propulsion for small satellites. Plasma Physics and Controlled Fusion. 2014;57:014005.
    [4] Rezaeiha A, Mankavi F. A Study of the Effect of Input Power on Liquified-Gas Resistojet Performance2012.
    [5] Hoskins WA, Cassady RJ, Morgan O, Myers RM, Wilson F, King DQ, et al. 30 years of electric propulsion flight experience at Aerojet Rocketdyne. 33rd International Electric Propulsion Conference, Washington, DC2013. p. 1-12.
    [6] Dropmann M, Ehresmann M, Pagan A, Le Q, Romano F, Montag C, et al. Low Power Arcjet Application for End of Life Satellite Servicing. Proceedings of the 7th European Conference on Space Debri, Darmstadt, Germany2017. p. 18-21.
    [7] Bock D, Herdrich G, Lau M, Lengowski M, Schönherr T, Steinmetz F, et al. Electric Propulsion Systems for Small Satellites: The Low Earth Orbit Mission Perseus. 2012. p. 629-38.
    [8] Micci M, Bilén S, Clemens D. History and current status of the microwave electrothermal thruster. Progress in Propulsion Physics. 2009;1:425-38.
    [9] Thruster, Sullivan. Current Status of the Microwave Arcjet. 2003.
    [10] Bering EA, Chang-Díaz FR, Squire JP, Brukardt M, Glover TW, Bengtson RD, et al. Electromagnetic ion cyclotron resonance heating in the VASIMR. Advances in Space Research. 2008;42:192-205.
    [11] Makela J, Washeleski R, King L. Regenerable Field Emission Cathode for Spacecraft Neutralization. Journal of Propulsion and Power - J PROPUL POWER. 2009;25:970-5.
    [12] Schönherr T, Little B, Krejci D, Reissner A, Seifert B. Development, production, and testing of the IFM nano FEEP thruster. 36th International Electric Propulsion Conference2019. p. 1-11.
    [13] Banerjee S, Mazumdar S. Electrospray Ionization Mass Spectrometry: A Technique to Access the Information beyond the Molecular Weight of the Analyte. International Journal of Analytical Chemistry. 2012;2012:282574.
    [14] Brown NP, Walker MLR. Review of Plasma-Induced Hall Thruster Erosion. Applied Sciences. 2020;10:3775.
    [15] Jahn R, Choueiri E. Electric Propulsion. 2003. p. 125-41.
    [16] Andreussi T, Pegoraro F. Magnetized plasma flows and magnetoplasmadynamic thrusters. Physics of Plasmas. 2010;17:063507.
    [17] Choueiri E. A Critical History of Electric Propulsion: The First Fifty Years (1906-1956). Journal of Propulsion and Power - J PROPUL POWER. 2004;20:193-203.
    [18] Kaufman HR. Technology of Electron-Bombardment Ion Thrusters. In: Marton L, editor. Advances in Electronics and Electron Physics: Academic Press; 1975. p. 265-373.
    [19] White RM. Elastic Wave Generation by Electron Bombardment or Electromagnetic Wave Absorption. Journal of Applied Physics. 1963;34:2123-4.
    [20] Loeb H, Schartner K-H, Meyer B, Feili D, Kirmse D. Forty Years of Giessen EP-Activities and the Recent RIT-Microthruster Development. 2021.
    [21] John Dunning J. NASA's Electric Propulsion Program - Technology investments for the new millennium. 37th Joint Propulsion Conference and Exhibit.
    [22] Brophy J, Marcucci M, Ganapathi G, Garner C, Henry M, Nakazono B, et al. The Ion Propulsion System for Dawn. 2003.
    [23] Holste K, Dietz P, Scharmann S, Keil K, Henning T, Zschätzsch D, et al. Ion thrusters for electric propulsion: Scientific issues developing a niche technology into a game changer. Review of Scientific Instruments. 2020;91.
    [24] Bulit A, Perez Luna J, Gonzalez J, Gonzalez del Amo J, Lotz B, Feili D, et al. Experimental Investigations on the Influence of the Facility Background Pressure on the Plume of the RIT-4 Ion Engine. IEPC 2011. 2011.
    [25] Tani Y, Tsukizaki R, Koda D, Nishiyama K, Kuninaka H. Performance improvement of the μ10 microwave discharge ion thruster by expansion of the plasma production volume. Acta Astronautica. 2019;157:425-34.
    [26] Gerst D. Investigation of Magnetized Radio Frequency Plasma Sources for Electric Space Propulsion 2013.
    [27] Kawai Y, Uchino K, Muta H, Kawai S, Röwf T. Development of large diameter ECR plasma source. Vacuum. 2010;84:1381-4.
    [28] Sercel J. AIAA-87-1407 Electron-Cyclotron-Resonance ( ECR ) Plasma Acceleration.
    [29] Smirnov P, Kozakov R, Schein J. Experimental Characterization of the Capacitively Coupled RF-Plasma Thruster. Applied Sciences. 2021;11:6799.
    [30] Tsifakis D, Charles C, Boswell R. An Inductively-Coupled Plasma Electrothermal Radiofrequency Thruster. Frontiers in Physics. 2020;8.
    [31] Cuxart MG, !`ics I, Goñi AR, Pach E, Sauthier G, Paradinas M, et al. Inductively coupled remote plasma-enhanced chemical vapor deposition (rPE-CVD) as a versatile route for the deposition of graphene micro- and nanostructures. Carbon. 2017;117:331-42.
    [32] Fujino T, Yamauchi M. Numerical study of plasma-fluid characteristics and thrust performance of a low-power argon inductively coupled plasma electrothermal thruster. Journal of Applied Physics. 2020;128:173302.
    [33] Herman DA, Gallimore AD. An ion thruster internal discharge chamber electrostatic probe diagnostic technique using a high-speed probe positioning system. Review of Scientific Instruments. 2008;79:013302.
    [34] Yeo SH, Ogawa H, Kahnfeld D, Schneider R. Miniaturization perspectives of electrostatic propulsion for small spacecraft platforms. Progress in Aerospace Sciences. 2021;126:100742.
    [35] Ion Thruster Plasma Generators. Fundamentals of Electric Propulsion2008. p. 91-188.
    [36] Snyder J, Goebel DM, Hofer RR, Polk JE, Wallace NC, Simpson H. Performance Evaluation of the T6 Ion Engine. Journal of Propulsion and Power. 2012;28:371-9.
    [37] Gonzalez del Amo J. ESA Activities in ESA 20182018.
    [38] Yavuz B, Turkoz E, Celik M. Prototype design and manufacturing method of an 8 cm diameter RF ion thruster2013.
    [39] Bering EA, Chang-Diaz F, Squire J. The use of rf waves in space propulsion systems. URSI Radio Science Bulletin. 2004;2004:92-106.
    [40] Collingwood C, Gabriel SB, Corbett MH, Wallace NC, Jameson P. Development of a Differential Radio Frequency Ion Thruster for Precision Spacecraft Control. 2009.
    [41] L. San Gregorio M, Xie K, Wang N, guo n, Zhang Z. Ion engine grids: Function, main parameters, issues, configurations, geometries, materials and fabrication methods. Chinese Journal of Aeronautics. 2018;31.
    [42] Stoute C, Quine B. Design and testing of low-cost miniature ion thruster for nanosatellites. Canadian Aeronautics and Space Journal. 2015;61:1-8.
    [43] Noord J. Lifetime Assessment of the NEXT Ion Thruster. Collection of Technical Papers - 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference. 2007;3.
    [44] Mazouffre S. Electric propulsion for satellites and spacecraft: established technologies and novel approaches. Plasma Sources Science and Technology. 2016;25:033002.
    [45] Wirz RE, Anderson JR, Goebel DM, Katz I. Decel grid effects on ion thruster grid erosion. IEEE Transactions on Plasma Science. 2008;36:2122-9.
    [46] Mingming S, Liang W, Juntai Y, Xiaodong W, Huang Y, Meng W. Study of the key factors affecting the triple grid lifetime of the LIPS-300 ion thruster. Plasma Science and Technology. 2018;20:045504.
    [47] Yadollahi M, Taleghani AS, Esfahanian V. Extractor grid effects on beam characteristics of dual-stage ion thruster. IEEE Transactions on Plasma Science. 2018;47:350-6.
    [48] Coletti M, Gabriel SB. The Applicability of Dual Stage Ion Optics to Ion Engines for High Power Missions. IEEE Transactions on Plasma Science. 2012;40:1053-63.
    [49] Noda K, Kanazawa M, Itano A, Takada E, Torikoshi M, Araki N, et al. Slow beam extraction by a transverse RF field with AM and FM. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 1996;374:269-77.
    [50] Martinez R, Williams J, Goebel D. Electric field breakdown properties of materials used in ion optics systems. 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit2006. p. 5004.
    [51] Feili D, Lotz B, Bonnet S, Meyer B, Loeb H, Puetmann N. µNRIT-2.5 -A New Optimized Microthruster Of Giessen University. 2009.
    [52] Vavilov IS, Fedynin VV, Yachmenev PS, Zharikov KI, Lukyanchik AI, Stepen PV. Review of electric thrusters with low consumption power for corrective propulsion system of small space vehicles. Journal of Physics: Conference Series. 2020;1546:012071.
    [53] JR. LAS, FARSHI B. Some Approximation Concepts for Structural Synthesis. AIAA Journal. 1974;12:692-9.
    [54] Krishnamurthy T. Response Surface Approximation with Augmented and Compactly Supported Radial Basis Functions2003.
    [55] Park J, Sandberg IW. Universal Approximation Using Radial-Basis-Function Networks. Neural Computation. 1991;3:246-57.
    [56] Smola A, Schölkopf B. A tutorial on support vector regression. Statistics and Computing. 2004;14:199-222.
    [57] Higher order multivariate inference using approximation methods. 2015.
    [58] Xiu D. Fast Numerical Methods for Stochastic Computations: A Review. COMMUNICATIONS IN COMPUTATIONAL PHYSICS Commun Comput Phys. 2009;5:242-72.
    [59] Krige DG. A statistical approach to some basic mine valuation problems on the Witwatersrand. Journal of the Southern African Institute of Mining and Metallurgy. 1951;52:119-39.
    [60] Chapter 5 - Theoretical Basis of the Approach: The Theory of Regionalized Variables. In: David M, editor. Developments in Geomathematics: Elsevier; 1977. p. 91-114.
    [61] Sacks J, Welch WJ, Mitchell TJ, Wynn HP. Design and Analysis of Computer Experiments. Statistical Science. 1989;4:409-23, 15.
    [62] Bilicz S. Application of Design-of-Experiment Methods and Surrogate Models in Electromagnetic Nondestructive Evaluation. 2011.
    [63] Frolov A, Chizhonkov E. On the criteria of the Langmuir oscillations breaking in a plasma. Physica Scripta. 2020;95.
    [64] Yoon J-S. Dielectric barrier discharge plasma actuator study for low Reynolds number flow control_Ph.D Thesis. 2015.
    [65] Zhang Z, Tang H, Zhang Z, Wang J, Cao S. A retarding potential analyzer design for keV-level ion thruster beams. Review of Scientific Instruments. 2016;87:123510.
    [66] Kireeff Covo M, Molvik AW, Friedman A, Barnard JJ, Seidl PA, Logan BG, et al. Beam interaction measurements with a Retarding Field Analyzer in a high-current high-vacuum positively charged particle accelerator. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2007;577:139-45.
    [67] Landheer K, Kobelev AA, Smirnov AS, Bosman J, Deelen S, Rossewij M, et al. Note: Laser-cut molybdenum grids for a retarding field energy analyzer. Review of Scientific Instruments. 2017;88:066108.
    [68] Satir M, Sik F, Turkoz E, Celik M. Design of the retarding potential analyzer to be used with BURFIT-80 Ion thruster and validation using PIC-DSMC code. 2015 7th International Conference on Recent Advances in Space Technologies (RAST). 2015:577-82.
    [69] Debchoudhury S, Sengupta S, Earle G, Coley W. A Bootstrap-Based Approach for Improving Measurements by Retarding Potential Analyzers. Journal of Geophysical Research: Space Physics. 2019;124:4569-84.
    [70] Jiang N, Zhao N, Liu H, Fang T. Mass-resolved retarding field energy analyzer and its measurement of ion energy distribution in helicon plasma. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2005;229:508-18.
    [71] Ya-Li M, Fu-Jun T, Yu-Xiong X, Yi-Feng C, Ze-Dong Y. Retarding Potential Analyzer Design and Result Analysis for Ion Energy Distribution Measurement of the Thruster Plume in the Laboratory. world academy of science engineering & technology. 2012.
    [72] Ven THMvd, Meijere CAd, Horst RMvd, Kampen Mv, Banine VY, Beckers J. Analysis of retarding field energy analyzer transmission by simulation of ion trajectories. Review of Scientific Instruments. 2018;89:043501.
    [73] Groll C. Development of a Plasma Diagnostic System. 2018.
    [74] Zhang Z, Tang H, Ren J, Zhang Z, Wang J. Calibrating ion density profile measurements in ion thruster beam plasma. Review of Scientific Instruments. 2016;87:113502.
    [75] Han Z-H. Kriging surrogate model and its application to design optimization: A review of recent progress. 2016;37:3197-225.
    [76] Han Z-H, Zhang k-s. Surrogate-Based Optimization. 2012.
    [77] Shimoyama K, Jeong S, Obayashi S. Kriging-surrogate-based optimization considering expected hypervolume improvement in non-constrained many-objective test problems. 2013 IEEE Congress on Evolutionary Computation2013. p. 658-65.
    [78] Rauner D, Mattei S, Briefi S, Fantz U, Hatayama A, Lettry J, et al. Investigation of the RF efficiency of inductively coupled hydrogen plasmas at 1 MHz2017.
    [79] el-fayoumi I, Jones I. Measurement of the induced plasma current in a planar coil, low-frequency, RF induction plasma source. Plasma Sources Science and Technology. 1999;6:201.
    [80] Jayapalan K, Chin O-H, Wong C. Radio Frequency Planar Inductively Coupled Plasma: Fundamentals and Applications. 2017. p. 527-91.
    [81] Yang S. Diagnostics and modelling of an inductively coupled RF low-pressure low-temperature plasma. 1998.
    [82] Collin RE. Foundations for Microwave Engineering. 1992.
    [83] Bougas ID, Papadopoulou MS, Psannis K, Sarigiannidis P, Goudos SK. State-of-the-Art Technologies in RF Energy Harvesting Circuits – A Review. 2020 3rd World Symposium on Communication Engineering (WSCE)2020. p. 18-22.
    [84] Lee JJ, Kim SJ, Kim KK, Lee YS, You SJ. A simple model of solenoidal inductively coupled plasma sources considering finite size. AIP Advances. 2020;10:035008.
    [85] White DJ, Overfelt PL. Poynting's Theorems and Their Relationship to Antenna Power, Q, and Bandwidth. 1999.
    [86] Wilson J. Physics of Radio-Frequency Plasmas, by Pascal Chabert and Nicholas Braithwaite. Contemporary Physics. 2012;53:517-9.
    [87] Sudhir D, Bandyopadhyay M, Kraus W, Gahlaut A, Bansal G, Chakraborty AK. Online tuning of impedance matching circuit for long pulse inductively coupled plasma source operation--an alternate approach. The Review of scientific instruments. 2014;85 1:013510.
    [88] Rauner D, Briefi S, Fantz U. Influence of the excitation frequency on the RF power transfer efficiency of low pressure hydrogen ICPs. Plasma Sources Science and Technology. 2019;28:095011.
    [89] Yu -X, Xiao-Lian -D, Yi-Qing -Y, Zhao-Yuan -N. - Generation of multi-source inductively coupled plasma and its diagnostics. - Acta Physica Sinica. 2006;- 55:- 3494.
    [90] Rosa EB. Calculation of the self-inductance of single-layer coils: US Government Printing Office; 1906.
    [91] Terman FE. Radio engineers' handbook1943.
    [92] Wheeler HA. Simple inductance formulas for radio coils. Proceedings of the institute of Radio Engineers. 1928;16:1398-400.
    [93] Tanaka A, Kajiyama K, Matsumura M, Miyagawa N, Takehira N. The Calculation Formula of Self-Inductance of a Single-Layer Rhombic Coil. IEEJ Transactions on Fundamentals and Materials. 2000;120:257-8.
    [94] Khalaf M, Jasem S, Majeed M, Jasim H. Effect of the Longitudinal Magnetic Field on the Electrical Breakdown in Argon and Nitrogen Plasma Discharges. 2016.
    [95] Huang T-Y, Li Y-H, Shen M-H, Chen Y-C. Development of a Miniature Radio-Frequency Ion Engine with Inductively Coupled Plasma (ICP) Source for Cube Satellite Propulsion. AIAA Propulsion and Energy 2021 Forum.
    [96] EDEN M. Experimental studies of ion extraction, ion loss and energy balance in a SERT II type ion thrustor. 8th Electric Propulsion Conference.
    [97] Feili D, Loeb H, Schartner K, Weis S, Kirmse D, Meyer B, et al. Performance mapping of new µN-RITs at Giessen. IPEC2005.
    [98] Nakayama Y, Narisawa K. Neutral density measurement of ion thruster with differential pressure gauge. TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN. 2014;12:Pb_73-Pb_8.
    [99] Huck H, Somacal H, Di Gregorio D, Niello JO, Igarzabal M, DiPaolo H, et al. High-intensity positive beams extracted from a compact double-chamber ion source. Review of Scientific Instruments. 2005;76:063301-.
    [100] Kim V. Main Physical Features and Processes Determining the Performance of Stationary Plasma Thrusters. Journal of Propulsion and Power - J PROPUL POWER. 1998;14:736-43.
    [101] Maji D, Das S. Analysis of plasma-induced morphological changes in sputtered thin films over compliant elastomer. Journal of Physics D Applied Physics. 2014;47:105401 (14pp).
    [102] Forrester AIJ, Keane AJ. Recent advances in surrogate-based optimization. Progress in Aerospace Sciences. 2009;45:50-79.
    [103] Giunta A, Wojtkiewicz S, Eldred M. Overview of modern design of experiments methods for computational simulations2003.
    [104] Hou Z, Huang M, Leung L, Lin G, Ricciuto D. Sensitivity of surface flux simulations to hydrologic parameters based on an uncertainty quantification framework applied to the Community Land Model. Journal of Geophysical Research: Atmospheres. 2012;117:n/a-n/a.
    [105] Schretter C, Kobbelt LP, Dehaye P-O. Golden Ratio Sequences for Low-Discrepancy Sampling. J Graph Tools. 2012;16:95-104.
    [106] Khan S, Gunpinar E. AN EXTENDED LATIN HYPERCUBE SAMPLING APPROACH FOR CAD MODEL GENERATION. 2017;18:301-14.
    [107] Das S, Tesfamariam S. State-of-the-Art Review of Design of Experiments for Physics-Informed Deep Learning2022.
    [108] Preece R, Milanović J. Efficient Estimation of the Probability of Small-Disturbance Instability of Large Uncertain Power Systems. IEEE Transactions on Power Systems. 2015;31:1-10.
    [109] Holder R. Improving a Plan Library for Real-time Systems Using Nearly Orthogonal Latin Hypercube Sampling. AAAI2008. p. 1804-5.
    [110] Alexandrov AF, Kralkina E, Pavlov VB, Rukhadze AA, Bugrova AI, Bugrov GE, et al. ON THE POSSIBILITIES OF RF ION THRUSTERS OPTIMIZATION. 2005.
    [111] Kwon K. A novel numerical analysis of Hall Effect Thruster and its application in simultaneous design of thruster and optimal low-thrust trajectory. 2010.
    [112] Gulczinski FS. Examination of the structure and evolution of ion energy properties of a 5 kW class laboratory Hall effect thruster at various operational conditions. 1999.
    [113] Meckel NJ, Kay RJ, Engelbrecht CS, Gallimore AD, Dickens JC, Patterson MJ. High Performance, Low Power Ion Propulsion System Design Concept. Ann Arbor. 2001;1001:48109-2140.
    [114] Brophy JR. Ion thruster performance model. 1984.
    [115] Patterson MJ. Annular Ion Engine Concept and Development Status. 2016.
    [116] Dannenmayer K, Mazouffre S. Elementary scaling laws for the design of low and high power Hall effect thrusters. Progress in Propulsion Physics: EDP Sciences; 2009. p. 601-16.
    [117] Maslenikov N. Russian Electric Propulsion Seminar. Massachusetts Institute of Technology. 1991.
    [118] Feili D, Lotz B, Bonnet S, Meyer B, Loeb H, Puetmann N. µNRIT-2.5-a new optimized microthruster of Giessen University. The 31st International Electric Propulsion Conference2009.
    [119] Jackson S. Design of an Air-Breathing Electric Thruster for CubeSat Applications 2017.
    [120] Bumbarger PP. Analysis of a Miniature Radio Frequency Ion Thruster with an Inductively Coupled Plasma Source. 2013.
    [121] Sung T-L, Matsumura S, Teii K, Teii S. Self-compensated standing wave probe for characterization of radio-frequency plasmas. Review of Scientific Instruments. 2014;85:063507.
    [122] Hai-long X, Wei J, Chuan-hui L, Bo D, Yong R, Xin-chun M, et al. Studies on the ion energy distribution of radio-frequency discharges. Nuclear Fusion and Plasma Physics. 2021;41:598.
    [123] 杨振宇, 赵杨, 李光熙, 魏建国, 邓永锋. 1 mN 射频离子推力器参数与性能分析. 火箭推进. 2020;46:75-82.
    [124] Leiter H, Altmann C, Porst J, Lauer D, Berger M, Rath M. Six decades of thrust-the Ariane Group radiofrequency ion thrusters and systems family. 35th International Electric Propulsion Conference2017. p. 27.
    [125] Bundesmann C, Tartz M, Scholze F, Neumann H, Leiter H, Scortecci F, et al. In-situ temperature, grid curvature, erosion, beam and plasma characterization of a gridded ion thruster RIT-22. 31st International Electric Propulsion Conference Michigan2009. p. 24.
    [126] Porst J, Altmann C, Arnold C, Kuhmann J, Syring C, Leiter H, et al. The RIT 2X propulsion system: current development status. IEPC-2017-505, 35th International Electric Propulsion Conference, Georgia …; 2017.
    [127] Loeb H, Feili D, Popov G, Obukhov V, Balashov V, Mogulkin A, et al. Design of high-power high-specific impulse RF-ion thruster. 32nd International Electric Propulsion Conference, Wiesbaden, Germany2011. p. 1988-2007.
    [128] Tighe W, Chien K-R, Ahn J, Solis E, Hurtado J, Spears R. Update on the XIPS 8-cm Thruster Prototype. 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit2008. p. 4912.
    [129] Chien K-R, Tighe W, Bond T, Spears R. An overview of electric propulsion at L-3 communications, electron technologies inc. 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit2006. p. 4322.
    [130] Crofton M, Pollard J, Beiting E, Spektor R, Diamant K, Eapen X, et al. Characterization of the NASA NEXT Thruster. 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit2009. p. 4815.
    [131] Snyder JS, Goebel DM, Polk JE, Schneider AC, Sengupta A. Results of a 2000 hour wear test of the NEXIS ion engine. 2005.
    [132] Williams G, Haag T, Foster J, Van Noord J, Malone S, Hickman T, et al. Results of the 2000 hr Wear Test of the HiPEP Ion Thruster with Pyrlytic Graphite Ion Optics. 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit2006. p. 4668.
    [133] Foster J, Hubble A, Gucker S, Davis C, Peterson P, Viges E, et al. Simulated Beam Extraction Performance Characterization of a 50-cm Ion Thruster Discharge. 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit2012. p. 3795.
    [134] Brophy JR, Polk JE, Goebel DM. Development of a 50,000-s, lithium-fueled, gridded ion thruster. 2017.
    [135] Tsay M, Frongillo J, Zwahlen J, Paritsky L. Maturation of iodine fueled BIT-3 RF ion thruster and RF neutralizer. 52nd AIAA/SAE/ASEE Joint Propulsion Conference2016. p. 4544.
    [136] Gorshkov O. Low-power Hall type and ion electric propulsion for the small sized spacecraft. 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit1998. p. 3929.
    [137] Lovtsov AS, Shagayda AA, Muravlev VA, Selivanov MY. Ion Thrusters Development for a Transport and Power Generation Module Project. 34th International Electric Propulsion Conference2015.
    [138] Randall PN, Lewis SRA, Hall K. T5 performance, industrialisation and future applications. Proceedings of the 36th International Electric Propulsion Conference, vol University of Vienna, Austria QinetiQ Space UK2019.
    [139] Grubisic A, Clark S, Wallace N, Collingwood C, Guarducci F. Qualification of the T6 ion thruster for the BepiColombo mission to the planet mercury. 2011.
    [140] Luna JP, Lewis R, Park N, Bosher J, Guarducci F, Cannat F. T7 Thruster Design and Performance. Proceedings of the 36th International Electric Propulsion Conference: IEPC–2019–356: University of Vienna Austria; 2019.
    [141] Marques RI, Gabriel S. Dual stage four grid (DS4G) ion engine for very high velocity change missions. 31 st International Electric Propulsion Conference2009.
    [142] Koizumi H, Kuninaka H. Performance of the Miniature and Low Power Microwave Discharge Ion Engine mu-1. 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit2010. p. 6617.
    [143] Koizumi H, Komurasaki K, Arakawa Y. Development of the miniature ion propulsion system for 50 kg small spacecraft. 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit2012. p. 3949.
    [144] Funaki I, Nishiyama K, Kuninaka H, Toki K, Shimizu Y, Toki H. 20mN-class microwave discharge ion thruster. 27th International Electric Propulsion Conference, IEPC-01-103, Pasadena, USA2001. p. 15-9.
    [145] Komurasaki K. An overview of electric propulsion activities in Japan. 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit2003. p. 5272.
    [146] Kitamura S, Kajiwara K, Nagano H, Hayakawa Y. Development History and Current Status of DC-Type Ion Engines at JAXA. IEPC-2007–262, 30th InternationalElectric Propulsion Conference2007.
    [147] Kuninaka H. Ambitious challenges of Japanese electric propulsion. 29th International Electric Propulsion Conference, Princeton, NJ2005.

    下載圖示 校內:2025-09-12公開
    校外:2025-09-12公開
    QR CODE