| 研究生: |
張哲維 Chang, Che-Wei |
|---|---|
| 論文名稱: |
熱處理製程對Al-Co-Cr-Fe-Ni多主元合金微結構和機械性質的影響 Effects of heat-treatment process on microstructure and mechanical property of Al-Co-Cr-Fe-Ni multiprincipal component alloys |
| 指導教授: |
林士剛
Lin, Shih-Kang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 多主元合金 、CALPHAD 、合金微結構 、相體積分率 、機械性質 |
| 外文關鍵詞: | Multi-principal component alloys, CALPHAD, Alloy microstructure, Phase volume fraction, Mechanical properties |
| 相關次數: | 點閱:45 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
多主元合金,也稱為高熵合金,其是一個新的合金設計理念,然而多主元合金的出現改變了我們對於傳統合金的框架和概念,在過去我們所熟悉的傳統合金系統中,幾乎是以一個主要元素為主,再加入若干次要元素以改善其性質,然而多主元合金在這樣多種元素組成下,造就其擁有許多有別於傳統合金的特色和應用,在這一個新興的材料研究領域,多主元合金有更多的研究價值和應用面。
我們利用CALPHAD計算熱力學方法來預測多主元合金的熱處理溫度和相體積分率,本研究以Al-Co-Cr-Fe-Ni五元系統作為研究對象,希望藉由計算熱力學方法輔助探討合金微結構、相體積分率以及機械性質之間的關係,進而設計出兼具高強度與高韌性的新型多主元合金。
根據研究結果顯示,在Al-Co-Cr-Fe-Ni五元系統中,利用CALPHAD計算熱力學方法所得到的溫度及相分率結果與實驗上存在一定的誤差,希望透過在FCC單相中析出B2相和L12相的方式,我們的目標合金可以同時兼具強韌的特性。
Multi-principal element alloys are also called high-entropy alloys, it is a new alloy design concept. However, the emergence of multi-principal element alloys has changed our framework and concept of traditional alloys. In the traditional alloy system that we are familiar with in the past, almost one main element is the main element. Several minor elements are added to improve its properties. However, multi-principal element alloys have many characteristics and applications that are different from traditional alloys under such multiple element composition. In this emerging material research field, multi-principal alloys have more research value and application.
We use CALPHAD computational thermodynamics method to predict the heat treatment temperature and phase volume fraction of multi-principal alloys. In this study, the Al-Co-Cr-Fe-Ni five-element system is used as the research object. It is hoped that the CALPHAD approach can be used to find the relationship between structure, phase volume fraction and mechanical properties, and then design an Al-Co-Cr-Fe-Ni multi-principal alloy with both high strength and high ductility.
According to the research results, in the Al-Co-Cr-Fe-Ni five-element system, the temperature and phase fraction results obtained by the CALPHAD calculation thermodynamic method have certain errors from the experiment. It is hoped that the precipitation with the B2 phase and L12 phase in the FCC single phase, our target alloy can have both strength and ductility properties.
[1] 葉均蔚, “高熵合金的發展,” 華岡工程學報, no.27, pp.1-18, 2011.
[2] W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, J.W. Yeh, Effects of. Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys, Intermetallics 26 (2012) 44-51.
[3] B. Gwalani, V. Soni , D. Choudhuri , M. Lee , J.Y. Hwang , S.J. Nam , H. Ryu , S.H. Hong , R. Banerjee, Stability of ordered L12 and B2 precipitates in face centered cubic based high entropy alloys - Al0.3CoFeCrNi and Al0.3CuFeCrNi2, ”Scripta Materialia, vol. 123, pp. 130-134, 2016.
[4] B. Gwalani, V. Soni, M. Lee, S. Mantri, Y. Ren, R. Banerjee, "Optimizing the coupled effects of Hall-Petch and precipitation strengthening in a Al0.3CoCrFeNi high entropy alloy," Materials & Design, vol. 121, pp. 254-260, 2017.
[5] Y. Ma, Q. Wang, B.B. Jiang, C.L. Li, J.M. Hao, X.N. Li, T.G. Nieh, Controlled. formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni,Co,Fe,Cr)14 compositions, Acta Mater. 147 (2018) 213-225.
[6] Shun-Xiang Zhu, 基於計算熱力學輔助強韌Al-Co-Cr-Fe-Ni多主元合金設計, 2019.
[7] J. Wang, T. Guo, J. Li, W. Jia, H. Kou, Microstructure and mechanical. properties
of non-equilibrium solidified CoCrFeNi high entropy alloy, Mater. Chem. Physics. 210(2018) 192-196.
[8] W.R. Wang, W.L. Wang, J.W. Yeh, Phases, microstructure and mechanical.properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures, J. Alloys and Compd. 589 (2014) 143-152.
[9] C.M. Lin, H.L. Tsai, Evolution of microstructure, hardness, and corrosion. properties of high-entropy Al0.5CoCrFeNi alloy, Intermetallics 19 (3) (2011) 288-294.
[10] J. Wang, S. Niu, T. Guo, J. Li, The FCC to BCC phase transformation kinetics. in an Al0.5CoCrFeNi high entropy alloy, J. Alloys and Compd. 710 (2017) 144-150.
[11] W.H. Liu, T. Yang, C.T. Liu, Precipitation hardening in CoCrFeNi-based high. entropy alloys. Mater. Chem. Physics. 210 (2018) 2-11.
[12] S.Z. Niu, H.C. Kou, T. Guo, Y. Zhang, J. Wang, J.S. Li, Strengthening of. nanoprecipitations in an annealed Al0.5CoCrFeNi high entropy alloy, Mater. Sci. Eng. A 671(2016) 82-86.
[13] Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range, Acta Mater. 124 (2017) 143-150.
[14] Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, B. Wen, Z. Wang, J. Jie, Z. Cao, H. Ruan, A promising new class of high-temperature alloys: eutectic high-entropy alloys, Sci. Rep.4 (2014).
[15] T. Bhattacharjee, R. Zheng, Y. Chong, S. Sheikh, S. Guo, I.T. Clark, T. Okawa, I.S. Wani, P.P. Bhattacharjee, A. Shibata, N. Tsuji, Effect of low temperature on tensile properties of AlCoCrFeNi2.1 eutectic high entropy alloy, Mater. Chem. Physics. 210 (2018) 207-212.
[16] X. Gao, Y. Lu, B. Zhang, N. Liang, G. Wu, G. Sha, J. Liu, Y. Zhao, Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy, Acta Mater. 141 (2017) 59-66.
[17] Y.F. Kao, T.J. Chen, S.K. Chen, J.W. Yeh, Microstructure and mechanical. property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0<x<20) high-entropy alloys, J. Alloys and Compd. 488 (2009) 57-64.
[18] Q.H. Tang, Y. Huang, Y.Y. Huang, X.Z. Liao, T.G. Langdon, P.Q. Dai, Hardening of an Al0.3CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing, Mater. Lett. 151 (2015) 126-129.
[19] Y. Ma, B. Jiang, C. Li, Q. Wang, C. Dong, P.K. Liaw, F. Xu, L. Sun, The. BCC/B2 Morphologies in AlxNiCoFeCr High-Entropy Alloys, Metals. 7 (2017) 57.
[20] C. Zhang, F. Zhang, H. Diao, M. C. Gao, Z. Tang, J. D. Poplawsky, P. K. Liaw, "Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys," Materials & Design, vol. 109, pp. 425-433, 2016.
[21] J. Wang, T. Guo, J. Li, W. Jia, H. Kou, "Microstructure and mechanical properties of non-equilibrium solidified CoCrFeNi high entropy alloy, " Mater. Chem. Physics. 210(2018) 192-196.
[22] J. Joseph, T. Jarvis, X. Wu, N. Stanford, P. Hodgson, and D. M. Fabijanic, "Comparative study of the microstructure and mechanical properties of direct laser fabricated and arc-melted AlxCoCrFeNi high entropy alloys, "Material Ccience and Engineering: A, vol. 633, pp. 184-193, 2015.
[23] Y. Lv, R. Hu, Z. Yao, J. Chen, D. Xu, Y. Liu, X. Fan, "Cooling rate effect on microstructure and mechanical properties of AlxCoCrFeNi high entropy alloys, " Material &Design, vol. 132, pp. 392-399, 2017.
[24] G. Liu, L. Liu, X. Liu, Z. Wang, Z. Han, G. Zhang, A. Kostka, " Microstructure and mechanical properties of Al0.7CoCrFeNi high-entropy-alloys prepared by directional solidification, " Intermetallics, vol. 93, pp. 93-100, 2018.
[25] S.G. Ma, S.F. Zhang, J.W. Qiao, Z.H. Wang, M.C. Gao, Z.M. Jiao, H.J. Yang, Y. Zhang, "Superior high tensile elongation of a single-crystal CoCrFeNiAl0.3 high-entropy alloy by Bridgman solidification, " Intermetallics 54 (2014) 104-109.