簡易檢索 / 詳目顯示

研究生: 張峯銘
Chang, Fengming
論文名稱: 使用總合模糊法以改善小資料學習之準確度於彈性製造系統之排程
Using Mega-fuzzification Method to Improve Small Data Set Learning Accuracy for Early Flexible Manufacturing System Scheduling
指導教授: 吳植森
Wu, Chihsen
利德江
Li, Der-Chiang
學位類別: 博士
Doctor
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 67
中文關鍵詞: 彈性製造系統人工智慧、機器學習初期知識小資料學習資料連續化總合模糊資料領域外擴
外文關鍵詞: small data set learning, FNN, artificial intelligence, scheduling, FMS, mega-fuzzification, early knowledge, machine learning, ANN
相關次數: 點閱:102下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   過去幾年, 許多學者已針對彈性製造系統之最佳排程策略做出了很多的研究, 這當中, 許多應用人工智慧(Artificial Intelligence, AI)領域之機器學習(machine learning)的方法分別被提出來,這些方法大部分仰賴大量的學習資料以建立知識(knowledge); 但是,在彈性製造系統(Flexible Manufacturing System, FMS)初期階段所收集以建立知識的資料是少量而不完整的,這樣導致製造策略預測的準確度相對的低。然而,在競爭激烈的環境中製造決策又必須很快的做成決定,因此,提高初期知識(early knowledge)預測的準確變成一個非常具有挑戰性的問題。

      因此, 本論文主要著眼於小資料學習(small data set learning)方法的研究, 以提高初期彈性製造系統排程之準確度,所提出的方法包括資料連續化(data continualization)的觀念、總合模糊(mega-fuzzification)方法、模糊理論的應用、資料領域外擴(data domain external expansion)方法等。同時,本論文也考慮到資料偏斜(bias)的現象往往於小資料中發生並進而提出一個方法來修正這個現象;本論文的研究結果顯示,所提出之方法能夠有效的提高小資料學習的準確度。

     Many machine learning methods to improve system scheduling have been proposed in the field of artificial intelligence (AI). Most of them rely on a large amount of data having been gathered, and knowledge derived from the limited data available in the early manufacturing stages is usually too fragile for a flexible manufacturing system (FMS). This causes the accuracy of prediction with regard to the production strategy to be very low. It is therefore a challenging problem to increase the accuracy of predictions derived from early knowledge acquisition. This thesis is aimed at increasing the accuracy of machine learning for FMS scheduling using small data sets. Methodologies proposed include data continualized concept, mega-fuzzification, application of fuzzy theory, and data domain external expansion approach. Also, this thesis considers the data bias phenomenon that often occurs in small data sets and provides a method for its adjustment. Furthermore, a method is proposed to determine the domain external expansion magnitude when data range is unknown. Briefly, the results of this thesis show that the proposed approaches can increase the learning accuracy in a broad range of applications.

    ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I ACKNOWLEDGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII LIST OF FIGURES . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VIII Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Research motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Proposed methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Chapter 2 Literature review for small data set learning . . . . . . . . . . . . . . . . . . 6 2.1 Machine learning research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Virtual data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 The Functional Virtual Population approach . . . . . . . . . . . . . . . . . . . . . 9 2.4 Continuous data band method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.5 Data trend estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.6 Computational Learning Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.6.1 Basic setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.6.2 True error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.6.3 PAC Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.6.4 Number of required training examples . . . . . . . . . . . . . . . . . . . . . 16 2.7 Information diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.8 The ANN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.9 The FNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Chapter 3 The structure of the FMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.1 Part processing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 System operational assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3 Input attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.4 Best scheduling rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.5 Learning and testing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Chapter 4 The proposed method and computational results . . . . . . . . . . . . . . . 33 4.1 Data continualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2 Mega-fuzzification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.3 Learning improvement using continuous data . . . . . . . . . . . . . . . . . . . . 39 4.4 Data band external expansion for known data ranges . . . . . . . . . . . . . . 43 4.5 The number of membership functions . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.6 Type of membership functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.7 The performance of the proposed approach for known data limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Chapter 5 Determination of the domain expansion range for unknown data limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.1 Data bias adaptation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.2 Determination of the expansion magnitude . . . . . . . . . . . . . . . . . . . . . . 51 5.3 The complete approach for unknown data limits . . . . . . . . . . . . . . . . . . 52 5.4 Learning results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Chapter 6 Conclusions and future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 BIBLIOGRAPHY 63

    Anthony, M. and Biggs, N., Computational Learning Theory, 1997, Cambridge University Press
    Baker, K. R. and Scudder, G. D., “Sequencing with earliness and tardiness penalties: A review,” Operations Research, 38, 1990, 22-36
    Chen, C. C. and Yih, Y., “Identifying attributes for knowledge-based development in dynamic scheduling environments,” International Journal Production Research, 34(6), 1996, 1739-1755
    Huang, C. F., “Principle of information diffusion,” Fuzzy Sets and Systems, 91, 1997, 69-90
    Huang, C. and Moraga, C., “A diffusion-neural-network for learning from small samples,” International Journal of Approximate Reasoning, 35, 2004, 137-161
    Ip, P. W. L., Lau, H. C. W., and Chan, F. T. S., “An intelligent Internet information delivery system to evaluate site preferences,” Expert Systems with Applications, 18, 2000, 33-42
    Jang, J. S. R., “ANFIS: Adaptive-Network-based Fuzzy Inference Systems,” IEEE Transactions on Systems, Man and Cybernetics, 23(3), 1993, 665-685
    Kuo, R. J. and Chen, J. A., “A decision support system for order selection in electronic commerce based on fuzzy neural network supported by real-coded genetic algorithm,” Expert Systems with Applications, 26, 2004, 141-154
    Li, D. C., Chen, L. S., and Lin, Y. S., “Using functional virtual population as assistance to learn scheduling knowledge in dynamic manufacturing environments,” International Journal of Production Research, 41(17), 2003, 4011-4024
    Li D. C., Han K. L., and Tong K. Y., “A strategy for evolution of algorithms to increase the computational effectiveness of NP-hard scheduling problems,” European Journal of Operation Research, 88, 1996, 404-412
    Li, D. C. and She, I. S., “Using unsupervised learning technologies and simulation analysis to induce scheduling knowledge for flexible manufacturing systems,” International Journal of Production Research, 32(9), 1994, 2187-2199
    Li, D. C., Wu, C., and Chang, F. M., “Using Data-fuzzification Technology in Small Data Set Learning to Improve FMS Scheduling Accuracy,” International Journal of Advanced Manufacturing Technology, 2005(a), in press
    Li, D. C., Wu, C., Tsia, T. I., and Chang, F. M., “Using Mega-Fuzzification and Data Trend Estimation in Small Data Set Learning for Early FMS Scheduling Knowledge,” Computers & Operations Research, 2005(b), in press.
    Li, D. C., Wu, C., and Tong, K. Y., “Using an unsupervised neural network and decision tree as knowledge acquisition tools for FMS scheduling,” International Journal of System Science, 28(10), 1997, 977-985
    Lo, S. P., “The application of an ANFIS and grey system method in turning tool-failure detection,” Internal Journal of Advanced Manufacture Technology, 19, 2002, 564-572
    Mackey, M. C. and Glass, L., “Oscillation and chaos in physiological control systems,” Science, 197, 1977, 287-289
    Monostori, L., “AI and machine learning techniques for managing complexity, changes and uncertainties in manufacturing,” Engineering Applications of Artificial Intelligence, 16, 2003, 277-291
    Nakasuka, S. and Yoshida, T., “Dynamic scheduling system utilizing machine learning as a knowledge acquisition tool,” International Journal Production Research, 30, 1992, 411-431
    Niyogi, P., Girosi, F., and Tomaso, P., “Incorporating prior information in machine learning by creating virtual examples,” Proceeding of the IEEE, 1998, 275-298.
    Pierreval, H. and Ralambondrainy, H., “A simulation and learning technique for generating knowledge about manufacturing systems behavior,” Journal of the Operational Research Society, 41(6), 1990, 461-474
    Priore, P., De La Fuente, D., Gomez, A., and Puente, J., “A review of machine learning in dynamic scheduling of flexible manufacturing systems,” AIEDAM, 15, 2001, 251-263
    Quinlan, J. R., “Learning efficient classification procedures and their application to chess and games,” Machine Learning: An Artificial Intelligence Approach, 1, Toiga, Palo Alto, CA, 1983, 463-482
    Quinlan, J. R., “Induction of decision trees,” Machine Learning, 1, 1986, 81-106
    Quinlan, J. R., “Simplifying decision trees,” International Journal of Man-Machine Studies, 27, 1987, 221-234
    Quinlan, J. R., “Learning decision tree classifiers,” ACM Computing Surveys, 28(1), 1996, 71-72
    Sabuncuoglu, I. and Touhami, S., “Simulation metamodelling with neural networks: an experimental investigation,” International Journal of Production Research, 40, 2002, 2483-2505
    Shaw, M. J., Park, S., and Raman, N., “Intelligent scheduling with machine learning capabilities: The induction of scheduling knowledge,” IIE Transactions, 24(2),1992, 56-168
    Srinivasan, M. and Moon, Y. B., “A framework for a goal-driven approach to group technology applications using conceptual clustering,” International Journal of Production Research, 35, 1997, 1759-1773
    Sugeno, M. and Kang, G. T., “Structure identification of fuzzy model,” Fuzzy Sets and System, 28, 1998, 15-23
    Sun, Y. L. and Yih, Y., “An intelligent controller for manufacturing cells,” International Journal of Production Research, 34(8), 1996, 2353-2373
    Sung, M. B., Sung, H. H., and Sang, C. P., “Fuzzy web ad selector based on web usage mining,” IEEE Intelligent Systems, 18(6), 2003, 62-69
    Takagi, T. and Sugeno, M., “Derivation of fuzzy control rules from human operator’s control actions,” Proceedings of the IFAC Symposium on Fuzzy Information, Knowledge Representation and Decision Analysis, July 1983, pp 55-60
    Takagi, T. and Sugeno, M., “Fuzzy identification of systems and its applications to modeling and control,” IEEE Transactions on Systems, Man and Cybernetics 15, 1985, 116-132

    下載圖示 校內:2010-06-08公開
    校外:2010-06-08公開
    QR CODE