簡易檢索 / 詳目顯示

研究生: 呂子豪
Lu, Tzu-Hao
論文名稱: Timoshenko樑的動態穩定性分析
Dynamic Stability for Timoshenko Beam
指導教授: 李森墉
Lee, Sen-Yung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 46
中文關鍵詞: 穩定性Timoshenko樑動態穩定
外文關鍵詞: dynamic stability, stability, Timoshenko beam
相關次數: 點閱:58下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 考慮一個具等向性材料性質,兩端為簡支撐,斷面對稱且均勻的樑,並在一端承受一個具週期性的軸向力的Timoshenko樑,其無因次化統御方程式為一個具週期性係數四階微分方程式,利用準週期條件(quasi-periodic condition)來討論此四階微分方程式的特性,在經由一連串複雜的推導和證明之後,即可經由判斷式來判斷系統的穩定性。
    文中利用近似正規化基本解來求基本解,因此能提高數值計算時的效率與精確度。另外,在和文獻比較過後發現,利用本文的方法所得到的穩定圖中,仍有一些不穩定的區域是以往文獻中往未曾發現的。

    The governing equation of the dynamic stability problem of Timoshenko beam subjected to the varied axial loads and associated with the simple supported boundary conditions at two ends is just a fourth order ordinary differential equation with periodic coefficients. Then, use the quasi-periodic condition to investigate the properties of the differential equation. After complicated derivation and proof, the system is stable or not can be obtained by the determination equation.
    In this thesis, the more accurate results we can get by using the approximate normalized fundamental solutions method. In addition, we will find some unstable region that haven be found yet in the past.

    摘要… … … … … … … … … … … … … … … … … … … … … … … … … I 英文摘要… … … … … … … … … … … … … … … … … … … … … … … II 致謝… … … … … … … … … … … … … … … … … … … … … … … … … III 目錄… … … … … … … … … … … … … … … … … … … … … … … … … IV 表目錄… … … … … … … … … … … … … … … … … … … … … … … … VI 圖目錄… … … … … … … … … … … … … … … … … … … … … … … … VI 符號說明… … … … … … … … … … … … … … … … … … … … … … … VIII 第一章緒論… … … … … … … … … … … … … … … … … … … … 1 1.1 前言… … … … … … … … … … … … … … … … … … … … 1 1.2 文獻回顧… … … … … … … … … … … … … … … … … … 2 1.3 研究方向及目的… … … … … … … … … … … … … … … 4 第二章統御方程式… … … … … … … … … … … … … … … … … 5 2.1 推導統御方程式… … … … … … … … … … … … … … … 5 2.2 無因次化統御方程式… … … … … … … … … … … … … 8 第三章穩定性分析… … … … … … … … … … … … … … … … … 11 3.1 判斷穩定性… … … … … … … … … … … … … … … … … 11 3.2 數值求解… … … … … … … … … … … … … … … … … … 15 第四章結果與討論… … … … … … … … … … … … … … … … … 17 第五章結論… … … … … … … … … … … … … … … … … … … … 23 參考文獻… … … … … … … … … … … … … … … … … … … … … … … 42 自述… … … … … … … … … … … … … … … … … … … … … … … … … 46

    1. N. W. McLachlan, Theory and Application of Mathieu Functions, Oxford University Press, New York, NY, 1957.
    2. W. Magnus and S. Winkler, Hill Equation, John Wiley and Sons, New York, 1966.
    3. V. V. Bolotin, The Dynamic Stability of Elastic System, Holden Day, San Francisco, London, Amsterdam, 1964.
    4. S. P. Timoshenko and J. M. Gere, Theory of Elastic Stability, McGraw-Hill, New York, 1963.
    5. V. I. Weingarten, “Investigation of the Dynamic Stability of Rod.” Aerospace Corporation, ELSegundo, California, TDR-269(456-40)-3, 1964.
    6. S. Z. H. Burney and L. G. Jaeger, “A Method of Determining the Regions of Instability of A Column by A Numerical Method Approach.” Journal of Sound and Vibration, Vol. 15, No. 1, pp. 75-91, 1971.
    7. J. Thomas and B. A. H. Abbas, “Dynamic Stability of Timoshenko Beams by Finite Element Method.” Journal of Engineering for Industry, pp. 1145-1151, 1976.
    8. B. P. Shastry and G. Venkateswara Rao, “Dynamic Stability of Bars Considering Shear Deformation and Rotatory Inertia.” Computers & Structures, Vol. 19, pp. 823-827, 1984.
    9. J. E. Brown, J. M. Hutt and A. E. Salama, “Finite Element Solution to Dynamic Stability of Bars.” AIAA Journal, Vol. 16, pp. 1423-1425, 1968.
    10. P. Friedmann, C. E. Hammond and T.H. Woo, “Efficient Numerical Treatment of Periodic Systems with Application to Stability Problems.” International Journal for Numerical Method in Engineering, Vol. 11, pp. 1117-1136, 1977.
    11. T. Iwatsubo and M. Saigo, “Parametric Instability of Clamed-Clamed and Clamed-Simply Supported Columns under Periodic Axial Load.” Journal of Sound and Vibration, Vol. 30, No. 1, pp. 65-77, 1973.
    12. F. C. L. Fu and S. Nemat-Nasser, “Stability Solution of Systems of Linear Differential Equations with Harmonic Coefficients.” AIAA Journal, Vol. 10, No. 1, pp. 30-36, 1972.
    13. C. S. Hsu, “Impulsive Parametric Excitation: Theory.” Journal of Applied Mechanics, Vol. 49, pp. 551-558, 1972.
    14. C. S. Hsu and W. H. Cheng, “Applications of the Theory of Impulsive Parametric Excitation and New Treatments of General Parametric Excitation Problems.” Journal of Applied Mechanics, pp. 78-86, 1973.
    15. S. K. Sinha, “Dynamic Stability of a Timoshenko Beam Subjected to an Oscillating Axial Force.” Journal of Sound and Vibration, Vol. 131, No. 3, pp. 509-514, 1989.
    16. C. E. Majorana and C. Pellegrino, “Dynamic Stability of Elastically Constrained Beams: An Exact Approach.” Engineering Computations, Vol. 14, No. 7, pp. 792-805, 1997.
    17. L. Briseghella, C. E. Majorana and C. Pellegrino, “Dynamic Stability of Elastically Structures: A Finite Element Approach.” Computers & Structures, Vol. 69, pp. 11-25, 1998.

    18. C. E. Majorana and C. Pellegrino, “Dynamic Stability of Beams with Finite Displacements and Rotations.” Engineering Computations, Vol. 16, No. 6, pp. 639-658, 1999.
    19. S. L. Lau, Y. K. Cheung and S. Y. Wu, “A Variable Parameter Incrementation Method for Dynamic Instability of Linear and Nonlinear Elastic System.” Journal of Applied Mechanics, Vol. 49, pp. 849-853, 1982.
    20. J. H. Kim and Y. S. Choo, “Dynamic Stability of A Free-Free Timoshenko Beam Subjected to A Pulsating Follower Force.” Journal of Sound and Vibration, Vol. 216, No. 4, pp. 623-636, 1998.
    21. S. Y. Lee and Y. H. Kuo, “Elastic Stability of Non-uniform Columins.” Journal of Sound and Vibration, Vol. 148, No. 1, pp. 11-24, 1991
    22. S. Y. Lee and H. Y. Ke, “Free vibrations of a non-uniform beam with general elastically restrained boundary conditions.” Journal of Sound and Vibration, Vol. 136, No. 3, pp. 425-437, 1990
    23. S. Y. Lee and H. Y. Ke, “Free vibrations of non-uniform beams resting on non-uniform elastic foundation with general elastic end restraints.” Computers & Structures, Vol. 34, No. 3, pp. 421-429, 1990
    24. J. B. Kosmatka, “An Improved Two-Node Finite Element for Stability and Natural Frequencies of Axial-Loaded Timoshenko Beams.” Computers & Structures, Vol. 57, No. 1, pp. 141-149, 1995.
    25. K. Sato, “On the Governing Equations for Vibration and Stability of a Timoshenko Beam: Hamilton’s Principle.” Journal of Sound and Vibration, Vol. 145, No. 2, pp. 338-340, 1991.
    26. Bolotin, Nonconservative Problems of the Theory of Elastic Stability. London : Pergamon Press, 1979.
    27. G. Herrmann, “Stability of equilibrium of elastic systems subjected to nonconservative forces.” Applied Mechanics Reviews, Vol. 20, pp. 103-108, 1967
    28. T. Yokoyama, “Parametric Instability of Timoshenko Beams Resting on An Elastic Foundation.” Computers & Structures, Vol. 28, No. 2, pp. 207-216, 1988.
    29. B. P. Shastry and G. Venkateswara Rao, “Dynamic Stability of A Short Cantilever Column Subjected to Distributed Axial Loads.” Computers & Structures, Vol. 22, pp. 1063-1064, 1986.
    30. 柯煇耀, “不均勻樑的靜態及動態分析” 成功大學博士論文, 1989
    31. 郭義雄, “不均勻樑的分析,” 成功大學博士論文, 1990
    32. 林水木, “非均勻Timoshenko樑的分析” 成功大學博士論文, 1993

    下載圖示 校內:立即公開
    校外:2003-07-10公開
    QR CODE