簡易檢索 / 詳目顯示

研究生: 黃堃泰
Huang, Kuen-Tai
論文名稱: 以原子層沉積系統成長氧化鎂鋅金屬半導體金屬紫外光檢測器
Application of the MgZnO-based metal-semiconductor-metal ultraviolet photodetector grown by Atomic Layer Deposition
指導教授: 李清庭
Li, Ching-Ting
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 55
中文關鍵詞: 原子層沉積系統氧化鋅氧化鎂鋅前驅物暗電流紫外光-可見光拒斥比
外文關鍵詞: Atomic Layer Deposition, ZnO, MgZnO, precursor, dark current, UV-visible rejection ratio
相關次數: 點閱:125下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用原子層沉積系統在低溫環境下,成長高品質、高均勻性氧化鋅系列薄膜。前驅物採用二乙基鋅、二茂鎂及水。藉由前驅物通入的時間及基板溫度,改變氧化鋅薄膜特性,製作出低濃度且低缺陷的氧化鋅薄膜。而氧化鋅紫外光檢測器主要檢測波段為370nm,透過鎂的摻雜,控制氧化鎂鋅薄膜的能隙,製作出檢測波段低於370nm之金屬-半導體-金屬紫外光檢測器。
    本研究分為兩個部分,第一部分為優化氧化鋅薄膜品質,首先改變氧化鋅薄膜的基板溫度,基板溫度於150-200℃時,為原子層沉積系統成長氧化鋅的自我侷限視窗。當基板溫度於200℃時,雖有最快的沉積速率1.64Å/cycle,但其薄膜電子濃度高達8.27×1019cm-3;然而於較低之基板溫度100℃時,其薄膜沉積速率降低至1.06Å/cycle,但卻有較低的電子濃度5.6×1017cm-3。
    本研究中另一重點為氧化鎂鋅金屬-半導體-金屬紫外光檢測器,可藉由調變氧化鋅與氧化鎂堆疊的層數比,成長不同能隙的氧化鎂鋅薄膜。最後將氧化鋅與氧化鎂堆疊層數為9比1之氧化鎂鋅薄膜,分別在溫度100℃及350℃的環境下成長,製成金屬-半導體-金屬紫外光光檢測器。其暗電流於偏壓5V時各別為1.72×10-9A及1.67×10-4A,兩者相差約5個數量級。基板溫度100℃的光檢測器具有較低之暗電流特性,並於波段為340nm功率為38.02μW的紫外光照射下,其偏壓5V的光-暗電流比為1.35×103,而紫外光-可見光拒斥比(R340/R450)為1.38×103。

    In this study, the ZnO thin film which has high quality and uniformity was grown at low temperature by atomic layer deposition system. The diethylzinc, Bis(cyclopentadienyl) magnesium and water were used as precursors, and then varied the pulse time of precursors and substrate temperature to have low defect and carrier concentration of the ZnO thin film. Moreover, the optical energy bandgap of the MgZnO changed by various doping amounts of magnesium, and applied to the metal-semiconductor- metal ultraviolet photodetector, which cut-off wavelength was lower than 370nm.
    This study was divided into two parts. At first, to have best quality of ZnO thin film by varied the substrate temperature. According to the window of self-limiting, the substrate temperature from 150℃ to 200℃ were self-limiting in atomic layer deposition system. The ZnO thin film has fastest deposition rate of 1.64Å/cycle and highest electron concentration about 8.27×1019cm-3 at 200℃. However, it has lowest electron concentration of 5.6×1017cm-3 and deposition rate of 1.06Å/cycle lower when the substrate temperature at 100℃.
    The MgZnO thin film changed the Mg contents by various ratio of ZnO and MgO. In this study, the MgZnO which grown at 100℃ and 350℃ with ratio of 9:1 were applied into metal-semiconductor-metal ultraviolet photodetector. The dark current were 1.72×10-9A and 1.67×10-4A under 5V bias, respectively. The metal-semiconductor-metal ultraviolet photodetector which deposited at 100℃ has lower dark current. Besides, under the light power of 38.02μW and 5V bias at the wavelength of 340nm, the light-dark current ratio and UV-visible rejection ratio (R340/R450) of device were 1.35×103 and 1.38×103, respectively.

    中文摘要 III 英文摘要 V 致謝 VII 目錄 VIII 表目錄 XI 圖目錄 XII 第一章 序論 1 1.1 氧化鎂鋅薄膜簡介 1 1.2 紫外光檢測器 2 1.3 研究動機與目的 3 參考文獻 4 第二章 原理 7 2.1 原子層沉積系統原理 7 2.2 金屬-半導體接面理論 10 2.2.1 歐姆接觸 10 2.2.2 蕭特基接觸 10 2.3 金屬-半導體-金屬紫外光檢測器 13 2.3.1 金屬-半導體-金屬紫外光檢測器工作原理 13 2.3.2 電極幾何形狀影響 13 2.3.3 電壓電流特性曲線 14 2.3.4 光檢測器響應度 15 參考文獻 21 第三章 元件製作 23 3.1 原子層化學氣相沉積系統 23 3.2 金屬-半導體-金屬紫外光檢測器元件製作 24 3.2.1 定義元件主動區 24 3.2.2 定義蕭特基接觸之指叉狀金屬電極 25 參考文獻 31 第四章 元件特性量測與分析 32 4.1 薄膜分析 32 4.1.1 溫度對氧化鋅的影響 32 4.1.2 前驅物對氧化鋅的影響 33 4.1.3 前驅物對氧化鎂鋅的影響 35 4.1.4 堆疊層數對氧化鎂鋅的影響 35 4.1.5 溫度對氧化鎂鋅的影響 37 4.2 元件特性量測 39 4.2.1 暗電流與照光電流量測 39 4.2.2 響應度與波長的關係特性 40 參考文獻 53 第五章 結論 54

    第一章 序論
    [1] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent progress in processing and properties of ZnO,” Prog. Mater. Sci., vol. 50, pp. 293-340, 2005.
    [2] D. C. Look, J. W. Hemsky, and J. R. Sizelove, “Residual Native Shallow Donor in ZnO,” Phys. Rev. Lett., vol. 82, pp. 2552-2555, 1999.
    [3] T. T. Chu, H. Jiang, L. W. Ji, T. H. Fang, W. S. Shi, T. L. Chang, T. H. Meen, and J. Zhong, “Characterization of UV photodetectors with MgxZn1-xO thin films,” Microelectron. Eng., vol. 87, pp. 1777-1780, 2010.
    [4] W. Yang, S. S. Hullavarad, B. Nagaraj, I. Takeuchi, R. P. Sharma, T. Venkatesan, R. D. Vispute, and H. Shen, “Compositionally-tuned epitaxial cubic MgxZn1-xO on Si(100) for deep ultraviolet photodetectors,” Appl. Phys. Lett., vol 82, pp. 3424-3426, 2003.
    [5] D. Jiang, X. Zhang, Q. Liu, Z. Bai, L. Lu, X. Wang, X. Mi, N. Wang, and D. Shen, “Characterization of Mg0.20Zn0.80O metal-semiconductor-metal photodetectors,” Mater. Sci. Eng., B, vol. 175, pp. 41-43, 2010.
    [6] M. Liao, and Y. Koide, “High-performance metal-semiconductor-metal deep-ultraviolet photodetectors based on homoepitaxial diamond thin film,” Appl. Phys. Lett., vol. 89, pp. 113509-1-113509-3, 2006.
    [7] L. Li, Y. Ryu, H. W. White, and P. Yu, “Characterization of ZnO UV photoconductors on the 6H-SiC substrate,” Proc. of SPIE, vol. 7603, pp. 76031O-1-76031O-8, 2010.
    [8] H. Ohta, M. Kamiya, T. Kamiya, M. Hirano, and H. Hosono, “UV-detector based on pn-heterojunction diode composed of transparent oxide semiconductors, p-NiO/n-ZnO,” Thin Solid Films, vol. 445, pp. 317-321, 2003.
    [9] L. J. Mandalapu, Z. Yang, F. X. Xiu, D. T. Zhao, and J. L. Liu, “Homojunction photodiodes based on Sb-doped p-type ZnO for ultraviolet detection,” Appl. Phys. Lett., vol. 88, pp. 092103-1-092103-3, 2006.
    [10] H. Endo, M. Sugibuchi, K. Takahashi, S. Goto, S. Sugimura, K. Hane, and Y. Kashiwaba, “Schottky ultraviolet photodiode using a ZnO hydro thermally grown single crystal substrate,” Appl. Phys. Lett., vol. 90, pp. 121906-1-121906-3, 2007.
    [11] D. C. Oh, T. Suzuki, T. Hanada, T. Yao, H. Makino, and H. J. Ko, “Photoresponsivity of ZnO schottky barrier diodes,” J. Vac. Sci. Technol. B, vol. 24, pp. 1595-1598, 2006.
    [12] K. Wang, Y. Vygranenko, and A. Nathan, “ZnO-based p-i-n and n-i-p heterostructure ultraviolet sensors: a comparative study,” J. Appl. Phys., vol. 101, pp. 114508-1-114508-5, 2007.
    [13] M. Li, N. Chokshi, R. L. DeLeon, G. Tompa, and W. A. Anderson, “Radio frequency sputtered zinc oxide thin films with application to metal-semiconductor-metal photodetectors,” Thin Solid Films, vol. 515, pp. 7357-7363, 2007.
    [14] S. J. Young, L. W. Ji, S. J. Chang, and Y. K. Su, “ZnO metal- semiconductor-metal ultraviolet sensors with various contact electrodes,” J. Cryst. Growth, vol. 293, pp. 43-47, 2006.
    [15] L. K. Wang, Z. G. Ju, C. X. Shan, J. Zheng, D. Z. Shen, B. Yao, D. X. Zhao, Z. Z. Zhang, B. H. Li, and J. Y. Zhang, “MgZnO metal- semiconductor-metal structured solar-blind photodetector with fast response,” Solid State Commun., vol. 149, pp. 2021-2023, 2009.
    [16] K. Lee, K. T. Kim, J. M. Choi, M. S. Oh, D. K. Hwang, S. Jang, E. Kim, and S. Im, “Improved dynamic properties of ZnO-based photo-transistor with polymer gate dielectric by ultraviolet treatment,” J. Phys. D: Appl. Phys., vol. 41, pp. 135102-1-135102-5, 2008.
    [17] X. Wang, C. J. Summers, and Z. L. Wang, “Large-scale hexagonal- patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays,” Nano Lett., vol. 4, pp. 423-426, 2004.
    [18] K. H. Bang, D. K. Hwang, M. C. Jeong, K. S. Sohn, and J. M. Myoung, “Comparative studies on structural and optical properties of ZnO film grown on c-plane sapphire and GaAs (001) by MOCVD,” Solid State Commun., vol. 126, pp. 623-627, 2003.
    [19] H. Kumano, A. A. Ashrafi, A. Ueta, A. Avramescu, and I. Suemune, “Luminescence properties of ZnO films grown on GaAs substrates by molecular-beam epitaxy excited by electron-cyclotron resonance oxygen plasma,” J. Cryst. Growth, vol. 214-215, pp. 280-283, 2000.
    [20] Y. R. Ryu, S. Zhu, D. C. Look, J. M. Wrobel, H. M. Jeong, and H. W. White, “Synthesis of p-type ZnO films,” J. Cryst. Growth, vol. 216, pp. 330-334, 2000.
    [21] K. H. Kim, K. C. Park, and D. Y. Ma, “Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering,” J. Appl. Phys., vol. 81, pp. 7764-7772, 1997.

    第二章 原理
    [1] S. M. Sze, “Physics of semiconductor devices 2nd,” 1987.
    [2] S. M. Sze, “Semiconductor device physics and technology,” 2002.
    [3] Neamen, “Semiconductor Photonics Principles and Practices,” 2003.
    [4] S. M. Sze, D. J. Coleman, Jr., and A. Loya, “Current transport in metal-semiconductor-metal (MSM) structures,” Solid-State Electron., vol. 14, pp. 1209-1218, 1971.
    [5] S. V. Averine, Y. C. Chan, and Y. L. Lam, “Geometry optimization of interdigitated schottky-barrier metal-semiconductor-metal photodiode structures,” Solid-State Electron., vol. 45, pp. 441-446, 2001.
    [6] R. H. Yuang, and J. I. Chyi, “Effects of finger width on large-area InGaAs MSM photodetectors,” Electron. Lett., vol. 32, pp. 131-132, 1996.
    [7] J. Burm, K. I. Litvin, W. J. Schaff, and L. F. Eastman, “Optimization of high-speed metal-semiconductor-metal photodetector,” IEEE Photon. Technol. Lett., vol. 6, pp.722-724, 1994.
    [8] S. O. Kasap, “Optoelectronics and Photonics Principles and Practices,” 2001.
    [9] S. F. Soares, “Photoconductive gain in a schottky barrier photodiode,” Jpn. J. Appl. Phys., vol. 31, pp. 210-216, 1992.
    [10] H. Jiang, N. Nakata, G. Y. Zhao, H. Ishikawa, C. L. Shao, T. Egawa, T. Jimbo, and M. Umeno, “Back-illuminated GaN metal-semiconductor- metal UV photodetector with high internal gain,” Jpn. J. Appl. Phys., vol. 40, pp. L505-L507, 2001.
    [11] L. C. Chen, M. S. Fu, and I. L. Huang, “Metal-semiconductor-metal AlN mid-ultraviolet photodetectors grown by magnetron reactive sputtering deposition,” Jpn. J. Appl. Phys., vol. 43, pp. 3353-3355, 2004.

    第三章 元件製作
    [1] D. M. King, S. I. Johnson, J. Li, X. Du, X. Liang, and A. W. Weimer, “Atomic layer deposition of quantum-confined ZnO nanostructures,” Nanotechnology, vol. 20, pp. 195401-1-195401-8, 2009.
    [2] S. J. Kwon, “Effect of precursor-pulse on properties of Al-doped ZnO films grown by atomic layer deposition,” Jpn. J. Appl. Phys., vol. 44, pp. 1062-1066, 2005.
    [3] A. W. Ott, J. W. Klaus, J. M. Johnson, and S. M. George, “Al2O3 thin film growth on Si(100) using binary reaction sequence chemistry,” Thin Solid Films, vol. 292, pp. 135-144, 1997.
    [4] S. J. Chang, M. L. Lee, J. K. Sheu, W. C. Lai, Y. K. Su, C. S. Chang, C. J. Kao, G. C. Chi, and J. M. Tsai, “GaN metal-semiconductor-metal photodetectors with low-temperature-GaN cap layers and ITO metal contacts,” IEEE Electron Dev. Lett., vol. 24, pp. 212-214, 2003.

    第四章 元件特性量測與分析
    [1] K. Saito, Y. Yamamoto, A. Matsuda, S. Izumi, T. Uchino, K. Ishida, and K. Takahashi, “Atomic layer growth and characterization of ZnO thin films,” Phys. Stat. Sol., vol. 229, pp. 925-929, 2002.
    [2] J. Lim, and C. Lee, “Effects of substrate temperature on the microstructure and photoluminescence properties of ZnO thin films prepared by atomic layer deposition,” Thin Solid Films, vol. 515, pp. 3335-3338, 2007.
    [3] K. S. An, W. Cho, B. K. Lee, S. S. Lee, and C. G. Kim, “Atomic layer deposition of undoped and Al-doped ZnO thin films using the Zn alkoxide precursor methylzinc isopropoxide,” J. Nanosci. Nanotechnol., vol. 8, pp. 4856-4859, 2008.
    [4] S. J. Lim, S. Kwon, and H. Kim, “ZnO thin films prepared by atomic layer deposition and rf sputtering as an active layer for thin film transistor,” Thin Solid Films, vol. 516, pp. 1523-1528, 2008.
    [5] E.Guziewicz, M. Godlewski, L. Wachnicki, T. A. Krajewski, G. Luka, S. Gieraltowska, R. Jakiela, A. Stonert, W. Lisowski, M. Krawczyk, J. W. Sobczak, and A. Jablonski, “ALD grown zinc oxide with controllable electrical properties,” Semicond. Sci. Technol., vol. 27, pp. 074011-1- 074011-11, 2012.
    [6] C. C. Wu, D. S. Wuu, P. R. Lin, T. N. Chen, R. H. Horng, S. L. Ou, Y. L. Tu, C. C. Wei, and Z. C. Feng, “Characterization of MgxZn1-xO thin films grown on sapphire substrates by metalorganic chemical vapor deposition,” Thin Solid Films, vol. 519, pp. 1966-1970, 2011.

    下載圖示 校內:2018-02-07公開
    校外:2018-02-07公開
    QR CODE