簡易檢索 / 詳目顯示

研究生: 莊凱閎
Chuang, Kai-Hung
論文名稱: 酯交換反應熱可調性液晶彈性體的製備與特性探討
Fabrication and Characterization of Thermal Tunable Liquid Crystal Elastomers Based on Transesterification
指導教授: 劉瑞祥
Liu, Jui-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 74
中文關鍵詞: 可調式高分子液晶彈性體酯交換麥克爾加成反應記憶性高分子
外文關鍵詞: Tunable polymers, Liquid crystal elastomer, Transesterification, Michael addition, Shape memory polymer
相關次數: 點閱:46下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究製備以酯交換反應為原理的熱可調性液晶彈性體,為了讓彈性體具有液晶相,我們以市售液晶單體RM257當作高分子主鏈,並以thiol-acrylate 麥克爾加成反應合成液晶高分子。為了使彈性體在高溫下具有酯交換反應,我們加入鹼性催化劑TBD和單體GDD。
    在熱驅動測試和動態機械分析中,彈性體被證實含有液晶的特性,可以在有固定外力的情況下隨著溫度伸長縮短,證明了我們可以藉由外力使高分子中的液晶分子具有排列性。彈性體的熱可調性來自於高分子的共價鍵在高溫下因為鏈交換反應而重排,而在應力緩和測試當中,彈性體在80°C以上具有足夠的應力緩和性質。結果也顯示在沒有羥基的情況下,彈性體依然具有應力緩和的性質,但是效率隨著羥基的量而變好,也隨著溫度和催化劑的量有顯著地增加。
    為了使彈性體中的液晶分子排列,我們在高溫下以不同的應力拉伸彈性體,因為高溫下酯交換反應可以使共價鍵重排,所以拉伸過後的排列性可以被固定。在處理過後,液晶彈性體在沒有外界應力的狀態下,具有隨著溫度伸長縮短的性質。

    In this study, a series of thermal tunable liquid crystal elastomers (LCEs) showing transesterification bond exchange reaction was fabricated and studied. To create polymer elastomers showing liquid crystal phases, RM257 was used as a main chain liquid crystalline monomer. Monomeric glycerol 1,3-diglycerolate diacrylate and catalyst of triazabicyclodecene (TBD) were introduced to adjust the transesterification reaction at high temperature. From thermal actuation test, the synthesized elastomer shows two-way shape changing with a constant mono-axial stress under the temperature ramping from 0℃ to 75℃, indicating that the monodomain alignment can be achieved by the external mono-axial drawing. In addition, it is well known that the transesterification bond exchange reaction can rearrange the cross-linked covalent bond in the network showing stress relaxation behavior on the polymer network. From the stress relaxation test on DMA instrument, the synthesized LCEs show sufficient stress relaxation behaviors when the temperature is higher than 80℃. Furthermore, the stress relaxation behavior with different amounts of catalyst TBD and monomers having hydroxyl groups was investigated. The result shows that both catalyst amount and hydroxyl containing monomers show significant impacts on the stress relaxation behavior. When the synthesized elastomer was constructed in a specific shape and treated at bound exchangeable temperature, the shape was fixed after cooling down. The constructed shape shows good thermal stability.
    When a constant mono-axial stress is applied at bond exchangeable temperature, the synthesized LCE networks may align in the direction of applied stress driving polymer chain and mesogens to align in the same direction. Since the bond exchange reaction can rearrange the covalent bonds in the network, the aligned mesogen state is maintained when the temperature is removed. From shape switching test, after heating the synthesized LCE at 80°C for 90min via a mono-axial drawing, the prepared LCE sample demonstrates thermal reversible shape switching without external mechanical forces.

    Content 中文摘要 I Abstract II 致謝 IV List of Schemes VII List of Tables X List of Figures X 1. Introduction 1 1-1 Perface 1 1-2 Research Motivation 2 2. Literature Review 3 2-1 Introduction of Liquid Crystals 3 2-1-1Thermotropic Liquid Crystal 6 2-2 Anisotropic Properties of Liquid Crystals[7] 10 2-2-1 Birefeingence of Liquid Crystals[8] 11 2-2-2 Dielectric Properties of Liquid Crystals 13 2-3 Covalent Adaptable Network(CAN) 14 2-3-1 Classification of Covalent adaptable Networks 16 2-3-2 Introduction of Dynamic Covalent Chemistry 17 2-3-3 Characterization of covalent adaptable networks 22 2-4 Adaptable liquid crystal elastomers 25 2-4-1 Introduction to liquid crystalline elastomers 25 2-4-2 Deformation of Liquid-Crystalline Elastomers by External Stimuli 29 2-4-3 Covalent adaptable liquid crystal network 32 3. Experimental Section 35 3-1 Materials 35 3-2 Instruments 35 3-3 Fabrication of liquid crystal elastomers 36 3-4 Dynamic mechanical analysis of LCEs 38 4. Results and Discussion 41 4-1 Characterization of the Synthesized LCEs 41 4-1-1 Structure Identification 41 4-1-2 Thermal Properties of the Synthesized LCEs 43 4-1-3 Dynamic Mechanical Properties of the Synthesized LCEs 49 4-1-4 Optical Properties of the Synthesized 5LCE 55 4-2 Thermal Actuation Properties of 5LCE 56 4-2-1 Thermal actuation test with constant stress 56 4-2-2 Creep Programming and Length Switching Tests of 5LCE 57 4-3 Thermal Processability of the Synthesized 5LCE 64 4-3-1 Thermoplasticity of the Synthesized 5LCE 64 4-3-2 Realignment of the Synthesized 5LCE 65 5. Conclusions 68 Reference 69

    Reference
    [1] Reinitzer, F., Contributions to the knowledge of cholesterol. Liquid
    Crystals, 1989. 5(1) : p. 7-18.
    [2] Kato, T., Hirai, Y., Nakaso, S., and Moriyama, M., Liquid-crystalline
    physical gels. Chemical Society Reviews, 2007. 36(12): p. 1857-1867.
    [3] Brown, G.H., Structure, properties, and some applications of liquid crystals.
    JOSA, 1973. 63(12): p. 1505-1514.
    [4] H. Baumgärtel, E. U. Franck, and W. Grünbein, “Topics in Physical Chemistry,” Springer, 1994.
    [5] Stephen, M.J. and Straley, J.P., Physics of liquid crystals. Reviews of
    Modern Physics, 1974. 46(4): p. 617.
    [6] Zhang, L.-Y., et al., Research progress of cholesteric liquid crystals with broadband reflection characteristics in application of intelligent optical modulation materials. Chinese Physics B, 2016. 25(9): p. 096101.
    [7] Collings, P.J. and Hird, M., Introduction to liquid crystals: chemistry and
    physics. 2017: CRC Press.
    [8] Khoo, I.-C. and Wu, S.-T., Optics and nonlinear optics of liquid crystals.
    1993: World Scientific.
    [9] Stern, M. and Tobolsky, A., Stress-time-temperature relations in
    polysulfide rubbers. Rubber Chemistry and Technology, 1946. 19(4): p.
    1178-1192.
    [10] Tobolsky, A.V., Stress relaxation studies of the viscoelastic properties of
    polymers. Journal of Applied Physics, 1956. 27(7): p. 673-685.

    [11] Johnson, D., McLoughlin, J., and Tobolsky, A., Chemorheology of Some
    Specially Prepared Silicone Rubbers. The Journal of Physical Chemistry,
    1954. 58(12): p. 1073-1075.
    [12] Osthoff, R., Bueche, A., and Grubb, W., Chemical stress-relaxation of
    polydimethylsiloxane elastomers1. Journal of the American Chemical
    Society, 1954. 76(18): p. 4659-4663.
    [13] Montarnal, D., Capelot, M., Tournilhac, F., and Leibler, L., Silica-like
    malleable materials from permanent organic networks. Science, 2011.
    334(6058): p. 965-968.
    [14] Denissen, W., Winne, J.M., and Du Prez, F.E., Vitrimers: permanent
    organic networks with glass-like fluidity. Chemical science, 2016. 7(1): p.
    30-38.
    [15] Chen, X., Dam, M.A., Ono, K., Mal, A., Shen, H., Nutt, S.R., Sheran, K.,
    and Wudl, F., A thermally re-mendable cross-linked polymeric material.
    Science, 2002. 295(5560): p. 1698-1702.
    [16] Scott, T.F., Schneider, A.D., Cook, W.D., and Bowman, C.N., Photoinduced plasticity in cross-linked polymers. Science, 2005. 308(5728): p. 1615-1617.
    [17] Amamoto, Y., Kamada, J., Otsuka, H., Takahara, A., and Matyjaszewski,
    K., Repeatable photoinduced self‐healing of covalently cross‐linked
    polymers through reshuffling of trithiocarbonate units. Angewandte
    Chemie International Edition, 2011. 50(7): p. 1660-1663.
    [18] Fairbanks, B.D., Singh, S.P., Bowman, C.N., and Anseth, K.S.,
    Photodegradable, photoadaptable hydrogels via radical-mediated
    disulfide fragmentation reaction. Macromolecules, 2011. 44(8): p. 2444-
    2450.
    [19] Sastri, V. and Tesoro, G., Reversible crosslinking in epoxy resins. II. New
    approaches. Journal of applied polymer science, 1990. 39(7): p. 1439-
    1457.
    [20] Imbernon, L., Oikonomou, E., Norvez, S., and Leibler, L., Chemically
    crosslinked yet reprocessable epoxidized natural rubber via thermo-
    activated disulfide rearrangements. Polymer Chemistry, 2015. 6(23): p.
    4271-4278.
    [21] Michal, B.T., Jaye, C.A., Spencer, E.J., and Rowan, S.J., Inherently
    photohealable and thermal shape-memory polydisulfide networks. ACS
    Macro Letters, 2013. 2(8): p. 694-699.
    [22] Scott, T.F., Schneider, A.D., Cook, W.D., and Bowman, C.N.,
    Photoinduced plasticity in cross-linked polymers. Science, 2005.
    308(5728): p. 1615-1617.
    [23] Brutman, J.P., Delgado, P.A., and Hillmyer, M.A., Polylactide vitrimers.
    ACS Macro letters, 2014. 3(7): p. 607-610.
    [24] Zhao, Q., Zou, W., Luo, Y., and Xie, T., Shape memory polymer network
    with thermally distinct elasticity and plasticity. Science advances, 2016.
    2(1): p. e1501297.
    [25] Capelot, M., Unterlass, M.M., Tournilhac, F., and Leibler, L., Catalytic
    control of the vitrimer glass transition. ACS Macro Letters, 2012. 1(7):
    p. 789-792.
    [26] Denissen, W., Winne, J.M., and Du Prez, F.E., Vitrimers: permanent organic networks with glass-like fluidity. Chemical science, 2016. 7(1): p. 30-38.
    [27] De Gennes, P., Réflexions sur un type de polymères nématiques. CR
    Acad. Sci. Ser., B, 1975. 281: p. 101-103.
    [28] Finkelmann, H., Kock, H.J., and Rehage, G., Investigations on liquid
    crystalline polysiloxanes 3. Liquid crystalline elastomers—a new type of
    liquid crystalline material. Die Makromolekulare Chemie, Rapid
    Communications, 1981. 2(4): p. 317-322.
    [29] Küupfer, J. and Finkelmann, H., Liquid crystal elastomers: Influence of
    the orientational distribution of the crosslinks on the phase behaviour and
    reorientation processes. Macromolecular chemistry and physics, 1994.
    195(4): p. 1353-1367.
    [30] Zentel, R. and Reckert, G., Liquid crystalline elastomers based on liquid
    crystalline side group, main chain and combined polymers. Die
    Makromolekulare Chemie: Macromolecular Chemistry and Physics, 1986.
    187(8): p. 1915-1926.
    [31] Zentel, R. and Benalia, M., Stress‐induced orientation in lightly
    crosslinked liquid‐crystalline side‐group polymers. Die Makromolekulare
    Chemie: Macromolecular Chemistry and Physics, 1987. 188(3): p. 665-
    674.
    [32] Küpfer, J. and Finkelmann, H., Nematic liquid single crystal elastomers.
    Die Makromolekulare Chemie, Rapid Communications, 1991. 12(12): p.
    717-726.
    [33] Broer, D.J., Finkelmann, H., and Kondo, K., In‐situ photopolymerization of an oriented liquid‐crystalline acrylate. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, 1988. 189(1): p. 185-194.
    [34] Li, M.H., Keller, P., Yang, J., and Albouy, P.A., An artificial muscle with
    lamellar structure based on a nematic triblock copolymer. Advanced
    Materials, 2004. 16(21): p. 1922-1925.
    [35] Cui, L., Tong, X., Yan, X., Liu, G., and Zhao, Y., Photoactive
    thermoplastic elastomers of azobenzene-containing triblock copolymers
    prepared through atom transfer radical polymerization.
    Macromolecules, 2004. 37(19): p. 7097-7104.
    [36] Shandryuk, G.A., Kuptsov, S.A., Shatalova, A.M., Plate, N.A., and
    Talroze, R.V., Liquid crystal H-bonded polymer networks under
    mechanical stress. Macromolecules, 2003. 36(9): p. 3417-3423.
    [37] Mol, G.N., Harris, K.D., Bastiaansen, C.W., and Broer, D.J., Thermo‐
    mechanical responses of liquid‐crystal networks with a splayed molecular
    organization. Advanced Functional Materials, 2005. 15(7): p. 1155-1159.
    [38] Thomsen, D.L., Keller, P., Naciri, J., Pink, R., Jeon, H., Shenoy, D., and
    Ratna, B.R., Liquid crystal elastomers with mechanical properties of a
    muscle. Macromolecules, 2001. 34(17): p. 5868-5875.
    [39] Brömmel, F., Kramer, D., and Finkelmann, H., Preparation of liquid
    crystalline elastomers, in Liquid Crystal Elastomers: Materials and
    Applications. 2012, Springer. p. 1-48.
    [40] Zeng, H., Wani, O.M., Wasylczyk, P., Kaczmarek, R., and Priimagi, A.,
    Self‐regulating iris based on light‐actuated liquid crystal elastomer.
    Advanced Materials, 2017. 29(30): p. 1701814.
    [41] Saed, M.O., Torbati, A.H., Nair, D.P., and Yakacki, C.M., Synthesis of
    programmable main-chain liquid-crystalline elastomers using a two-
    stage thiol-acrylate reaction. JoVE (Journal of Visualized Experiments),
    2016(107): p. e53546.
    [42] Pei, Z., Yang, Y., Chen, Q., Terentjev, E.M., Wei, Y., and Ji, Y.,
    Mouldable liquid-crystalline elastomer actuators with exchangeable
    covalent bonds. Nature materials, 2014. 13(1): p. 36.
    [43] Wang, Z., Tian, H., He, Q., and Cai, S., Reprogrammable, reprocessible,
    and self-healable liquid crystal elastomer with exchangeable disulfide
    bonds. ACS applied materials & interfaces, 2017. 9(38): p. 33119-33128.
    [44] Hanzon, D.W., Traugutt, N.A., McBride, M.K., Bowman, C.N., Yakacki,
    C.M., and Yu, K., Adaptable liquid crystal elastomers with transesterification-based bond exchange reactions. Soft Matter, 2018. 14(6): p. 951-960.

    無法下載圖示 校內:2024-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE