簡易檢索 / 詳目顯示

研究生: 黃佑榮
Huang, Yu-Jung
論文名稱: 整合式生物產氫純化系統之評估
Evaluation of Potential of the Integrated Biological Hydrogen Production and Purification System
指導教授: 福島康裕
Yasuhiro Fukushima
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 92
中文關鍵詞: 生質產氫能量平衡物質平衡溫室氣體排放
外文關鍵詞: Biological hydrogen production, energy balance, material balance, greenhouse gas emissions
相關次數: 點閱:130下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,化石燃料快速消耗及其所衍生的溫室效應問題,已成為國際日漸關注的環保議題之一。因此,再生能源的開發與利用也成為重要的研究課題。其中,生質氫氣因為其高熱值及零碳排放的優點,被認為是具有高度發展潛能的項目。生質氫氣是利用有機物作為基質,藉由生物程序轉換而成。有機廢棄物的來源廣泛,包含木質纖維素及各類有機廢棄物。意即藉由生物產氫程序,可同時達成能源生產及廢棄物處理的目標。在台灣,每年製造約二百萬噸以木質纖維素為主的農業廢棄物,若經過適當程序後轉換成氫氣,一方面可增加台灣本地能源的生產量,降低對化石燃料的依存度,另一方面減少了農業廢棄物處理的問題。
    在本研究中,我們建立一個以農業廢棄物為基質的整合式生物產氫純化系統。系統中包含了水解,暗醱酵、光醱酵兩階段生物產氫,二氧化碳固定及厭氧消化等程序。首先,農業廢棄物會先水解成小分子還原糖,還原糖在暗醱酵中可再進一步轉化成氫氣、二氧化碳、及揮發酸。揮發酸在光醱酵中可再進一步轉化成氫氣。伴隨氫氣所產生的二氧化碳會在二氧化碳固定程序中被藻類或藍綠藻吸收,藉此可達成氫氣分離及純化的效果。系統中所產生的殘渣、揮發性固體物及出流水最終會在經由厭氧消化轉化成甲烷。之後,我們利用實驗數據、軟體模擬、生命週期評估資料庫以及文獻數據評估了整合式生物產氫純化系統的物質流及能源分析及溫室氣體減排潛能。結果顯示,利用1000公斤的稻桿做為基質,將可獲得19.8公斤的氫氣及138.0公斤的甲烷。整個系統的淨能源平衡(NEB)為-738.4kWh,而淨能源比例(NER)為77.8%。若將製造系統中所投入的化學藥品及電力的能量也納入考量,則NEB及NER將會降低到-11313 kWh及18.6%。整體系統的溫室氣體排放量為3864kg CO2-equiv.。此外,針對系統所作的敏感度分析顯示,光醱酵程序對整體系統有最大的影響。最後,我們設計了不同的情境評估其能源分析及溫室氣體排放量。在某些情境底下,如將光醱酵程序自系統中移除,NEB(或NER)可提升為正值(或大於1)。在各情境底下,溫室氣體排放量的範圍約在0.22至2.75 kg CO2-equiv./kWh, 其結果可與化石燃料發電所排放之溫室氣體做比較。藉由本研究模組所評估的結果,可從系統化的角度提供技術改善的方向。

    An integrated biological hydrogen production and purification system is evaluated in this study. The system uses unutilized agricultural waste as a raw material. Processes, such as hydrolysis, dark- and photo fermentation, CO2 fixation and anaerobic digestion comprise the proposed system. Agricultural waste is first hydrolyzed to produce reducing sugar, which can be further converted to H2, CO2 and volatile fatty acids (VFAs) in dark fermentation. And then, the VFAs are introduced to photo fermentation to produce H2. CO2 in the produced gases is entirely absorbed by alkaline solution to feed algae in CO2 fixation process. In this way, H2 is separated from CO2. The sludge, residue and effluent from previous processes are subject to anaerobic digestion to produce CH4. In the evaluation, data from experimental result, database of life cycle inventories, chemical, process simulation and the literature are used for calculation. The result shows that using 1,000 kg rice straw as substrate, 19.8 kg H2 and 138.0 kg CH4 are obtained. The net energy balance (NEB) and net energy ratio (NER) are -738.4 kWh and 77.8%, respectively. These values get worse to -11,313 and 18.6% if the energy needed to produce chemicals and electricity is taken into account. The net greenhouse gas (GHG) emission of the system is 3,864 kg CO2-equiv. The sensitivity analysis shows that the potentials to improve the performance particularly lie in the photo fermentation process. In addition, the NEB, NER and GHG emissions are evaluated for various scenarios. The NEB (or NER) could be positive (or larger than 1) in some scenarios such like eliminating photo fermentation from the system. The GHG emission results vary from 0.22 to 2.75 kg CO2-equiv./kWh, which were comparable with the emission inventory of electricity generated from fossil fuels. Using the constructed evaluation model, improvements in the respective technologies can be evaluated from the overall process systems points of view.

    Abstract I 摘要 III Acknowledgment V Table of contents VII Figure index IX Table index XI Chapter 1 Introduction 1 Chapter 2 Paper Review 5 2.1 Biological Hydrogen Production 5 2.1.1 Biophotolysis 5 2.1.2 Dark Fermentation 6 2.1.3 Photo Fermentation 7 2.2 Hydrogen purification 14 2.3 Pretreatment and hydrolysis of lignocellulose 14 2.4 Agricultural waste as feedstock 18 Chapter 3 Objective 21 Chapter 4 Methodology 23 4.1 Scope definition 23 4.2 Model Description 25 4.3 Constructing and integration of unit process models 25 4.3.1 Analysis of biomass 25 4.3.2 Hydrolysis 26 4.3.3 Hydrogen production by two-stage dark- and photo- fermentation 27 4.3.4 Carbon dioxide fixation 32 4.3.5 Anaerobic digestion 37 4.4 GHG emission 38 4.5 Energy analysis 41 4.5.1 Energy indicators 41 4.5.2 Energy output 42 4.5.3 Energy input 45 4.6 Sensitivity analysis 50 Chapter 5 Result and discussion 53 5.1 Material balances 53 5.2 Energy balance and productivity 56 5.3 Greenhouse gas emissions 58 5.4 Sensitivity analysis 60 5.5 Exploring different process options 64 5.6 The application of hydrogen production using agricultural waste in Taiwan 76 Chapter 6 Conclusion 81 Reference 83

    3Di Equipment Ltd., 2010. Mixing Vessels - Mixing Tank. 3Di Equipment Ltd.
    Aquarium Guys, 2010. Air Pump with Diffuser. Aquarium Guys.
    Argun, H., Kargi, F., 2010. Bio-hydrogen production from ground wheat starch by continuous combined fermentation using annular-hybrid bioreactor. Int. J. Hydrogen Energy 35, 6170-6178.
    Argun, H., Kargi, F., Kapdan, I.K., 2009a. Effects of the substrate and cell concentration on bio-hydrogen production from ground wheat by combined dark and photo-fermentation. Int. J. Hydrogen Energy 34, 6181-6188.
    Argun, H., Kargi, F., Kapdan, I.K., 2009b. Hydrogen production by combined dark and light fermentation of ground wheat solution. Int. J. Hydrogen Energy 34, 4305-4311.
    Asada, Y., Tokumoto, M., Aihara, Y., Oku, M., Ishimi, K., Wakayama, T., Miyake, J., Tomiyama, M., Kohno, H., 2006. Hydrogen production by co-cultures of Lactobacillus and a photosynthetic bacterium, Rhodobacter sphaeroides RV. Int. J. Hydrogen Energy 31, 1509-1513.
    Aspen Technology Inc., 2008. Aspen Plus v7.1. Aspen Technology, Inc., Cambridge.
    Benemann, J.R., Berenson, J.A., Kaplan, N.O., Kamen, M.D., 1973. Hydrogen Evolution by a Chloroplast-Ferredoxin-Hydrogenase System. Proceedings of the National Academy of Sciences 70, 2317-2320.
    Bereau of Energy, 2010. Energy Supply and Demand Situation of Taiwan in 2009. Bereau of Energy, Ministry of Econimic Affairs, Taipei.
    Bisio, A., Kabel, R.L., 1985. Scaleup of chemical processes : conversion from laboratory scale tests to successful commercial size design. Wiley, New York.
    Bockris, J.O., 2002. The origin of ideas on a Hydrogen Economy and its solution to the decay of the environment. Int. J. Hydrogen Energy 27, 731-740.
    BP p.l.c., 2010. BP Statistical Review of World Energy June 2010, in: BP Statistical Review of World Energy (Ed.).
    Bureau of Energy, 2010. Energy Supply and Demand Situation of Taiwan in 2009. Ministry of Economic Affairs, Taipei.
    Bureau of Energy, 2011. 臺灣地區能源政策及執行措施表. Ministry of Economic Affairs,, Taipei, Taiwan.
    Bureau of Energy, Coporate Synergy Development Center, 2010. 2010年能源產業技術白皮書. Bureau of Energy, Ministry of Economics, Taipei, Taiwan.
    Carbon Dioxide Information Analysis Center, 2011. Global, Regional, and National CO2 Emission Estimates from Fossil Fuel Burning, Cement Production, and Gas Flaring.
    Carvalho, R.N.L.d., 2009. Dilute acid and enzymatic hydrolysis of sugarcane bagasse for biogas production Biological Engineering. Lund University, Lund.
    Chang, J.S., Chu, H., Cheng, S.S., Whang, L.M., Fukushima, Y., Wu, J.H., 2010. 建構零CO2排放之生質能源系統以解決21世紀全球暖化與能源危機問題, 優質生活前瞻計畫. National Science Council of Taiwan.
    Chen, C.-Y., Lu, W.-B., Liu, C.-H., Chang, J.-S., 2008a. Improved phototrophic H2 production with Rhodopseudomonas palustris WP3-5 using acetate and butyrate as dual carbon substrates. Bioresour. Technol. 99, 3609-3616.
    Chen, C.-Y., Yang, M.-H., Yeh, K.-L., Liu, C.-H., Chang, J.-S., 2008b. Biohydrogen production using sequential two-stage dark and photo fermentation processes. Int. J. Hydrogen Energy 33, 4755-4762.
    Chen, C.H., 2004. 台灣中彰雲嘉南稻草露天燃燒事件對高屏地區光化煙霧形成之影響, Graduate Institute of Environmental Engineering. National Taiwan University, Taipei.
    Chen, J.W., 2009a. Exploring greenhouse gas emission reduction potential of microalgae-derived bio-fuel production process, Department of Environmental Engineering. National Cheng Kung University, Tainan, Taiwan.
    Chen, S., 2009b. The collection model and the cost investigation of agricultural waste (rice straw) research project. Environmental Protection Administration, R.O.C.
    Chen, W.-H., Chen, S.-Y., Kumar Khanal, S., Sung, S., 2006. Kinetic study of biological hydrogen production by anaerobic fermentation. Int. J. Hydrogen Energy 31, 2170-2178.
    Chen, Y.H., Huang, Y.F., 2007. Bioethanol promotion and technology development strategy in Taiwan. Sci-Tech Policy Review 3, 20-40.
    Chiao-Wei Mechanical Enterprise Co. Ltd., 2010. High Efficiency and Advantage Inverter Control Extractor Centrifugal Separator.
    China Electric Mfg. Corporation, 2010. 2010 Green Photoelectronic Product Catalogue, in: China Electric Mfg. Corporation (Ed.).
    Concil of Agriculture, 2010. Agricutural statistics yearbook 2009, in: Yuan, E. (Ed.).
    da Costa Sousa, L., Chundawat, S.P.S., Balan, V., Dale, B.E., 2009. 'Cradle-to-grave' assessment of existing lignocellulose pretreatment technologies. Curr. Opin. Biotechnol. 20, 339-347.
    Das, D., Veziroglu, T.N., 2001. Hydrogen production by biological processes: a survey of literature. Int. J. Hydrogen Energy 26, 13-28.
    Directorate General of Budget Accounting and Statistics, 2009. 農業廢棄物排放帳, 綠色國民所得帳編製報告. Executive Yuan, Taipei.
    Dunn, S., 2002. Hydrogen futures: toward a sustainable energy system. Int. J. Hydrogen Energy 27, 235-264.
    Ecoinvent Centre, 2010. Ecoinvent data v.2.2, in: Swiss Centre for Life Cycle Inventories (Ed.), Dübendorf, Switzerland.
    Einsele, A., 1976. Scaling of bioreactors, theory and reality, 5th International Fermentation Symposium, Berlin, Germany.
    Environmental Protection Administration, 2009. 放流水標準.
    Environmental Protection Administration, 2010. 溫室氣體排放統計, Taipei, Taiwan.
    European Natural Gas Vehicle Association, 2007. Public consultation on the implementation of the renewed strategy to reduce CO2 emissions from passenger cars and light-commercial vehicles.
    Fang, H.H.P., Liu, H., 2002. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour. Technol. 82, 87-93.
    Fischer, G., Schrattenholzer, L., 2001. Global bioenergy potentials through 2050. Biomass Bioenergy 20, 151-159.
    Fukushima, Y., Kuo, Y.M., 2008. Evaluation of GHG Emission Reduction Potentials of PV System Considering Power Mix Shifts. Journal of Energy Engineering 134, 58-62.
    Fukushima, Y., Shimada, M., Kraines, S., Hirao, M., Koyama, M., 2004. Scenarios of solid oxide fuel cell introduction into Japanese society. J. Power Sources 131, 327-339.
    GEMIS, 2010. Global emission model for integrated systems, GEMIS 4.6 Database, in: Öko-Institut Darmstadt (Ed.), Darmstadt, Germany.
    Guo, X.M., Trably, E., Latrille, E., Carrère, H., Steyer, J.-P., 2010. Hydrogen production from agricultural waste by dark fermentation: A review. Int. J. Hydrogen Energy 35, 10660-10673.
    Hall, C., Balogh, S., Murphy, D., 2009. What is the Minimum EROI that a Sustainable Society Must Have? Energies 2, 25-47.
    Hamby, D.M., 1994. A review of techniques for parameter sensitivity analysis of environmental models. Environ. Monit. Assess. 32, 135-154.
    Hawkes, F.R., Dinsdale, R., Hawkes, D.L., Hussy, I., 2002. Sustainable fermentative hydrogen production: challenges for process optimisation. Int. J. Hydrogen Energy 27, 1339-1347.
    Hawkes, F.R., Hussy, I., Kyazze, G., Dinsdale, R., Hawkes, D.L., 2007. Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress. Int. J. Hydrogen Energy 32, 172-184.
    Healey, F.P., 1970. Hydrogen evolution by several algae. Planta 91, 220-226.
    Himmel, M.E., Ding, S.-Y., Johnson, D.K., Adney, W.S., Nimlos, M.R., Brady, J.W., Foust, T.D., 2007. Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production. Science 315, 804-807.
    Hsueh, H.T., Li, W.J., Chen, H.H., Chu, H., 2009. Carbon bio-fixation by photosynthesis of Thermosynechococcus sp. CL-1 and Nannochloropsis oculta. J. Photochem. Photobiol. B: Biol. 95, 33-39.
    International Energy Agency, 2010. Renewables Information 2010 with 2009 data. International Energy Agency, Paris.
    International Energy Agency, 2011. CO2 emission from Fuel Combutstion 2010 edittion, IEA Statistics. International Energy Agency, Paris, France.
    Jørgensen, H., Kristensen, J.B., Felby, C., 2007. Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities Biofuels, Bioproducts and Biorefining 1, 119-134.
    Juang, C.-P., Whang, L.-M., Cheng, H.-H., 2011. Evaluation of bioenergy recovery processes treating organic residues from ethanol fermentation process. Bioresour. Technol. 102, 5394-5399.
    Kaparaju, P., Serrano, M., Thomsen, A.B., Kongjan, P., Angelidaki, I., 2009. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour. Technol. 100, 2562-2568.
    Kataoka, N., Miya, A., Kiriyama, K., 1997. Studies on hydrogen production by continuous culture system of hydrogen-producing anaerobic bacteria. Water Sci. Technol. 36, 41-47.
    Kumar, P., Barrett, D.M., Delwiche, M.J., Stroeve, P., 2009. Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Industrial & Engineering Chemistry Research 48, 3713-3729.
    Kuo, Y.M., Fukushima, Y., 2009. Greenhouse gas and air pollutant emission reduction potentials of renewable energy - case studies on photovoltaic and wind power introduction considering interactoins among technologies in Taiwan. J. Air Waste Manage. Assoc. 59, 360-372.
    Levin, D.B., Pitt, L., Love, M., 2004. Biohydrogen production: prospects and limitations to practical application. Int. J. Hydrogen Energy 29, 173-185.
    Lin, C.Y., Chang, F.Y., 2008. 生物氫能面面觀. 物理雙月刊 30.
    Linstrom, P.J., Mallard, W.G., 2010. NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD, 20899.
    Lo, Y.-C., Chen, C.-Y., Lee, C.-M., Chang, J.-S., 2010. Sequential dark-photo fermentation and autotrophic microalgal growth for high-yield and CO2-free biohydrogen production. Int. J. Hydrogen Energy 35, 10944-10953.
    Manish, S., Banerjee, R., 2008. Comparison of biohydrogen production processes. Int. J. Hydrogen Energy 33, 279-286.
    McCarty, P.L., Mosey, F.E., 1991. Modelling of Anaerobic Digestion Processes (A Discussion of Concepts). Water Sci. Technol. 24, 16.
    Melis, A., Happe, T., 2001. Hydrogen Production. Green Algae as a Source of Energy. Plant Physiol. 127, 740-748.
    Miller, G.L., 1959. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 31, 426-428.
    Ministry of Economic Affairs, 2009. 98年全國能源會議總結報告, 永續發展與能源安全, Taipei, Taiwan.
    Ministry of Transportation and Communications, 2009. 臺灣地區汽車延車公里統計, 交通統計要覽.
    Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M., 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96, 673-686.
    Moxley, G., Zhang, Y.H.P., 2007. More Accurate Determination of Acid-Labile Carbohydrates in Lignocellulose by Modified Quantitative Saccharification. Energy & Fuels 21, 3684-3688.
    Murphy, D.J., Hall, C.A.S., 2010. Year in review—EROI or energy return on (energy) invested. Ann. N. Y. Acad. Sci. 1185, 102-118.
    Nath, K., Das, D., 2004. Improvement of fermentative hydrogen production: various approaches. Appl. Microbiol. Biotechnol. 65, 520-529.
    Nath, K., Kumar, A., Das, D., 2005. Hydrogen production by Rhodobacter sphaeroides strain O.U.001 using spent media of Enterobacter cloacae strain DM11. Appl. Microbiol. Biotechnol. 68, 533-541.
    Nath, K., Muthukumar, M., Kumar, A., Das, D., 2008. Kinetics of two-stage fermentation process for the production of hydrogen. Int. J. Hydrogen Energy 33, 1195-1203.
    Ni, M., Leung, D.Y.C., Leung, M.K.H., Sumathy, K., 2005. An overview of hydrogen production from biomass. Fuel Process. Technol. 87, 461-472.
    Oh, Y.-K., Seol, E.-H., Kim, M.S.M.-S., Park, S., 2004. Photoproduction of hydrogen from acetate by a chemoheterotrophic bacterium Rhodopseudomonas palustris P4. Int. J. Hydrogen Energy 29, 1115-1121.
    Penner, S.S., 2006. Steps toward the hydrogen economy. Energy 31, 33-43.
    Perlack, R.D., Wright, L.L., Turhollow, A.F., Graham, R.L., Stokes, B.J., Erbach, D.C., 2005. Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. U.S. Department of Energy & U.S. Department of Agriculture.
    Redwood, M.D., Macaskie, L.E., 2006. A two-stage, two-organism process for biohydrogen from glucose. Int. J. Hydrogen Energy 31, 1514-1521.
    Rosen, M.A., Scott, D.S., 1998. Comparative efficiency assessments for a range of hydrogen production processes. Int. J. Hydrogen Energy 23, 653-659.
    Rypdal, K., Paciornik, N., Eggleston, S., Goodwin, J., Irving, W., Penman, J., Woodfield, M., 2006. Introduction to the 2006 guidelines, in: Eggleston, S., Buendia, L., Miwa, K., Nagra, T., Tnabe, K. (Eds.), 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Institute for Global Enviromental Stragegies, Hayama.
    Sarkar, S., Kumar, A., 2010. Large-scale biohydrogen production from bio-oil. Bioresour. Technol. 101, 7350-7361.
    Sasikala, K., Ramana, C.V., Rao, P.R., Kovacs, K.L., 1993. Anoxygenic Phototrophic Bacteria: Physiology and Advances in Hydrogen Production Technology. Adv. Appl. Microbiol. 38, 211-295.
    Shapouri, H., Wang, M., Duffield, J.A., 2006. Net Energy Balancing and Fuel-Cycle Analysis. John Wiley & Sons Ltd.
    Taiwan power company, 2010. Taiwan power company.
    Taiwan Water Coperation, 2010. Taiwan Water Coperation.
    Tao, Y., Chen, Y., Wu, Y., He, Y., Zhou, Z., 2007. High hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose. Int. J. Hydrogen Energy 32, 200-206.
    Tatterson, G.B., 1994. Scaleup and design of industrial mixing processes. McGraw-Hill, New York.
    Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, Y.C., Erasmus, B.F.N., de Siqueira, M.F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A.S., Midgley, G.F., Miles, L., Ortega-Huerta, M.A., Townsend Peterson, A., Phillips, O.L., Williams, S.E., 2004. Extinction risk from climate change. Nature 427, 145-148.
    UNFCCC, 2011. Status of Ratification of the Kyoto Protocol. UNFCCC's Kyoto Protocol Background.
    University of Nebraska-Lincoln, 2008. Biofuel: Major Net Energy Gain From Switchgrass-based Ethanol. ScienceDaily.
    Waks, Z., Silver, P.A., 2009. Engineering a Synthetic Dual-Organism System for Hydrogen Production. Appl. Environ. Microbiol. 75, 1867-1875.
    Yokoi, H., Maki, R., Hirose, J., Hayashi, S., 2002. Microbial production of hydrogen from starch-manufacturing wastes. Biomass Bioenergy 22, 389-395.
    Yokoi, H., Saitsu, A., Uchida, H., Hirose, J., Hayashi, S., Takasaki, Y., 2001. Microbial hydrogen production from sweet potato starch residue. J. Biosci. Bioeng. 91, 58-63.
    Yokoi, H., Tokushige, T., Hirose, J., Hayashi, S., Takasaki, Y., 1998. H2 production from starch by a mixed culture of Clostridium butyricum and Enterobacter aerogenes. Biotechnol. Lett. 20, 143-147.
    Zong, W., Yu, R., Zhang, P., Fan, M., Zhou, Z., 2009. Efficient hydrogen gas production from cassava and food waste by a two-step process of dark fermentation and photo-fermentation. Biomass Bioenergy 33, 1458-1463.
    黃政賢, 1987. 給水工程. 高立圖書有限公司.
    歐陽嶠暉, 1992. 下水道工程學. 長松文化.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE