| 研究生: |
王敍民 Wang, Hsu-Min |
|---|---|
| 論文名稱: |
結合影像觀測與三維波流耦合模式(SCHISM)進行裂流預測研究 Rip current predictions by integrating image observations and a 3D wave-current coupled model (SCHISM) |
| 指導教授: |
董東璟
Doong, Dong-Jiing |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 256 |
| 中文關鍵詞: | 裂流 、SCHISM 、數值模式 、小波邊緣偵測 、預測 |
| 外文關鍵詞: | Rip Current, SCHISM, Wavelet edge recognition, Numerical model, Prediction |
| 相關次數: | 點閱:22 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
裂流對海岸遊憩者構成重大威脅,但由於波浪、風場與海岸地形的複雜交互作用,預測裂流的發生一直極具挑戰性。本研究旨在透過整合現地影像觀測與先進數值模式來提升對裂流的觀測和預測能力。
本研究區域為於臺灣東北部的外澳海灘,利用小波邊緣偵測搭配影像卷積和幀數聚合的技術,建立乙套自動化裂流光學影像監測站,透過人工檢核該辨識模型準確率可達8成,故本研究利用該模型對整個海灘進行長期的監測,建立裂流案例與海氣象資料庫。對裂流案例進行分析,發現裂流寬度介於20-50 m,且在示性波高為1.0-1.5米、平均週期5-6秒、波向垂直入射海岸和中潮位的時候,裂流發生的機率會有所提升。同時本研究亦透過形貌動力學計算海灘類型參數和相對潮差,卻時發現外澳海域係屬裂流高潛勢發生區域。與此同時,本研究亦採用SCHISM水動力模式耦合WWM風浪模式,並將模式參數設置為適合模擬裂流的條件,建置裂流數值模擬模式。該模式是以VOR波浪動量應力進行輻射應力的計算,加上使用高解析度的網格(1 m)以及變動的陸地邊界,使得波流耦合模型能夠良好的描述近岸裂流的現象。透過與周遭鄰近實測資料站進行驗證,各向水動力參數的誤差NRMSE均小於0.15,且與監測站觀測結果比對,模擬裂流的準確率可達79%。
本研究以裂流數值模式對裂流發生的機制與發生時的特徵進行討論,對於海氣象條件的情境模擬,結論與現場觀測案例分析相似,且發現隨著波高,裂流的流速會增加。此外,設計三種常發生裂流的地形地貌,發現即便是同一種類型的地形地貌,些許的差異也會導致裂流發生時的特徵有所差異。此外,裂流發生並非僅在海表面,隨著裂流持續時間越長,裂流會從表層向下傳遞,可達到最大深度60%的位置。最後,透過將大範圍預報模式的資料輸入裂流數值模式,便可以達到裂流預測之用,本研究透過測試調整資料輸入的頻率和運算的時間步長,提出最佳的預測模式,在高準確率的同時,運算效率可提升2-3倍。
整合觀測與數值模擬的方法證明了對裂流災害進行有效評估的可行性。研究結果不僅加深了對裂流機制的認識,也具有實務意義,可作為建立裂流預警系統、增進海灘安全的基礎。
Rip currents pose significant hazards to coastal recreational users, yet predicting their occurrence remains highly challenging due to the complex interactions among wave dynamics, wind forcing, and coastal morphology. This study aims to enhance the capabilities of observation and forecasting of rip currents by integrating in-situ optical imagery with advanced numerical modeling techniques.
The study area is Waiou Beach, located in northeastern Taiwan. An automated rip current monitoring system was set up, which combines wavelet-based edge detection, image convolution, and temporal frame aggregation. The detection model achieved about 80% of those detected manually. This system was then used to monitor the beach for the long term. A rip current case database was created with the simultaneously recorded oceanographic and meteorological conditions. Case analyses showed that rip currents typically had widths of 20 to 50 meters and were more frequent when significant wave height ranged from 1.0 to 1.5 meters, mean wave period from 5 to 6 seconds, wave direction was nearly shore-normal, and tidal level was around mid-tide. Additionally, using morphodynamic indices to calculate beach parameters and relative tidal range, Waiou Beach was identified as a high-risk area for rip currents.
A three-dimensional numerical model was also developed using the Semi-implicit Cross-scale Hydroscience Integrated System Model (SCHISM) hydrodynamic model and Wind Wave Model (WWM). Parameters were tuned for rip current simulation, incorporating radiation stress from the VOR (vortex-force) wave momentum formulation, 1 m resolution grids, and dynamic land boundaries. These settings accurately represented nearshore rip current phenomena. Validation against field data showed that the normalized root-mean-square error (NRMSE) for hydrodynamic parameters was below 15%. Compared to monitoring station data, the model reproduced rip current events with an accuracy of 79%.
The numerical model investigated the mechanisms and dynamics of rip currents. Simulation results matched observations, indicating that higher wave heights produce stronger rip current velocities. Three common rip-prone morphologies of channel, sand bar, and bay tested showed that small differences within the same type can lead to distinct behaviors. Rip currents were found near the surface and extended downward; when sustained, the rip current flow can extend to a relative water depth of 0.6.. The study demonstrated the feasibility of using large-scale forecast data for the rip current model. By adjusting the input frequency and computational time step, an optimized configuration was developed, maintaining high accuracy and improving efficiency by two to three times.
Integrating observational and modeling approaches effectively assesses rip current hazards. This study enhances understanding of rip current dynamics and provides a foundation for operational early warning systems and improved beach safety.
Aagaard, T., & Vinther, N. (2008). Cross-shore currents in the surf zone: rips or undertow?. Journal of Coastal Research, 24(3), 561-570.
Aagaard, T., Kroon, A., Andersen, S., Sørensen, R. M., Quartel, S., & Vinther, N. (2005). Intertidal beach change during storm conditions; Egmond, The Netherlands. Marine geology, 218(1-4), 65-80.
Arakawa, A., & Lamb, V. R. (1977). Computational design of the basic dynamical processes of the UCLA general circulation model.
Arozarena, I., Houser, C., Echeverria, A. G., & Brannstrom, C. (2015). The rip current hazard in Costa Rica. Natural Hazards, 77, 753-768.
Arun Kumar, S. V. V., & Prasad, K. V. S. R. (2014). Rip current-related fatalities in India: a new predictive risk scale for forecasting rip currents. Natural hazards, 70, 313-335.
Attard, A., Brander, R. W., & Shaw, W. S. (2015). Rescues conducted by surfers on Australian beaches. Accident Analysis & Prevention, 82, 70-78.
Austin, M. J., Masselink, G., Scott, T. M., & Russell, P. E. (2014). Water-level controls on macro-tidal rip currents. Continental Shelf Research, 75, 28-40.
Austin, M. J., Scott, T. M., Russell, P. E., & Masselink, G. (2013). Rip current prediction: development, validation, and evaluation of an operational tool. Journal of coastal research, 29(2), 283-300.
Austin, M., Scott, T., Brown, J., Brown, J., MacMahan, J., Masselink, G., & Russell, P. (2010). Temporal observations of rip current circulation on a macro-tidal beach. Continental Shelf Research, 30(9), 1149-1165.
Beji, S., & Battjes, J. A. (1993). Experimental investigation of wave propagation over a bar. Coastal engineering, 19(1-2), 151-162.
Benassai, G., Aucelli, P., Budillon, G., De Stefano, M., Di Luccio, D., Di Paola, G., ... & Pennetta, M. (2017). Rip current evidence by hydrodynamic simulations, bathymetric surveys and UAV observation. Natural Hazards and Earth System Sciences, 17(9), 1493-1503.
Blumberg, A. F., & Mellor, G. L. (1987). A description of a three‐dimensional coastal ocean circulation model. Three‐dimensional coastal ocean models, 4, 1-16.
Borra, S., Nair, T. B., Jospeh, S., Kumar, S. V. A., Sridevi, T., Harikumar, R., ... & Prasad, K. V. S. R. (2023). Identifying rip channels along RK Beach, Visakhapatnam using video and satellite imagery analysis. Journal of the Indian Society of Remote Sensing, 51(2), 405-423.
Brambilla, W., Van Rooijen, A., Simeone, S., Ibba, A., & DeMuro, S. (2016). Field observations, video monitoring and numerical modeling at poetto beach, Italy. Journal of Coastal Research, (75), 825-829.
Bretherton, F. P., & Garrett, C. J. R. (1968). Wavetrains in inhomogeneous moving media. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 302(1471), 529-554.
Brewster, B. C., Gould, R. E., & Brander, R. W. (2019). Estimations of rip current rescues and drowning in the United States. Natural Hazards and Earth System Sciences, 19(2), 389-397.
Brighton, B., Sherker, S., Brander, R., Thompson, M., & Bradstreet, A. (2013). Rip current related drowning deaths and rescues in Australia 2004–2011. Natural hazards and earth system sciences, 13(4), 1069-1075.
Bruneau, N., Castelle, B., Bonneton, P., Pedreros, R., Almar, R., Bonneton, N., ... & Sénéchal, N. (2009). Field observations of an evolving rip current on a meso-macrotidal well-developed inner bar and rip morphology. Continental shelf research, 29(14), 1650-1662.
Casper, A., Nuss, E. S., Baker, C. M., Moulton, M., & Dusek, G. (2024). Assessing NOAA rip-current hazard likelihood predictions: comparison with lifeguard observations and parameterizations of Bathymetric and transient rip-current types. Weather and Forecasting, 39(7), 1045-1063.
Castelle, B., Almar, R., Dorel, M., Lefebvre, J. P., Senechal, N., Anthony, E. J., ... & Penhoat, Y. D. (2014). Rip currents and circulation on a high-energy low-tide-terraced beach (Grand Popo, Benin, West Africa). Journal of Coastal Research, (70), 633-638.
Castelle, B., Bujan, S., Marieu, V., & Ferreira, S. (2020). 16 years of topographic surveys of rip-channelled high-energy meso-macrotidal sandy beach. Scientific Data, 7(1), 410.
Castelle, B., Scott, T., Brander, R. W., & McCarroll, R. J. (2016). Rip current types, circulation and hazard. Earth-Science Reviews, 163, 1-21.
Castelle, B., Scott, T., Brander, R., McCarroll, J., Robinet, A., Tellier, E., ... & Salmi, L. R. (2019). Environmental controls on surf zone injuries on high-energy beaches. Natural Hazards and Earth System Sciences, 19(10), 2183-2205.
Cavaleri, L. (2006). Wave modeling: Where to go in the future. Bulletin of the American Meteorological Society, 87(2), 207-214.
Choi, J. (2022). A modification of the rip current warning system utilizing real-time observations: a database function of likelihood distributions. Journal of Korea Water Resources Association, 55(10), 843-854.
Craik, A. D., & Leibovich, S. (1976). A rational model for Langmuir circulations. Journal of Fluid Mechanics, 73(3), 401-426.
Da F. Klein, A. H., Santana, G. G., Diehl, F. L., & De Menezes, J. T. (2003). Analysis of hazards associated with sea bathing: results of five years work in oceanic beaches of Santa Catarina state, southern Brazil. Journal of Coastal Research, 107-116.
Dalrymple, R. A., MacMahan, J. H., Reniers, A. J., & Nelko, V. (2011). Rip currents. Annual Review of Fluid Mechanics, 43(1), 551-581.
de Silva, A., Mori, I., Dusek, G., Davis, J., & Pang, A. (2021). Automated rip current detection with region based convolutional neural networks. Coastal Engineering, 166, 103859.
Du, J., Park, K., Shen, J., Zhang, Y. J., Yu, X., Ye, F., ... & Rabalais, N. N. (2019). A hydrodynamic model for Galveston Bay and the shelf in the northern Gulf of Mexico. Ocean Science, 15(4), 951-966.
Dudkowska, A., Boruń, A., Malicki, J., Schönhofer, J., & Gic-Grusza, G. (2020). Rip currents in the non-tidal surf zone with sandbars: numerical analysis versus field measurements. Oceanologia, 62(3), 291-308.
Dukhovskoy, D. S., Morey, S. L., Martin, P. J., O’Brien, J. J., & Cooper, C. (2009). Application of a vanishing, quasi-sigma, vertical coordinate for simulation of high-speed, deep currents over the Sigsbee Escarpment in the Gulf of Mexico. Ocean Modelling, 28(4), 250-265.
Dusek, G., & Seim, H. (2013). A probabilistic rip current forecast model. Journal of Coastal Research, 29(4), 909-925.
Dusek, G., & Seim, H. (2013). Rip current intensity estimates from lifeguard observations. Journal of coastal research, 29(3), 505-518.
Eom, H., Yun, J. H., Jeong, C. K., Seo, J. W., & You, S. H. (2014). Introduction to KMA operational forecasting system for rip current. Journal of Coastal Research, (72), 63-68.
Feng, L., Suen, C. Y., Tang, Y. Y., & Yang, L. H. (2000). Edge extraction of images by reconstruction using wavelet decomposition details at different resolution levels. International journal of pattern recognition and artificial intelligence, 14(06), 779-793.
Floc'h, F., Mabiala, G. R., Almar, R., Castelle, B., Hall, N., Du Penhoat, Y., ... & Delacourt, C. (2018). Flash rip statistics from video images. Journal of Coastal Research, (81), 100-106.
Fu, G., Li, J., Yuan, K., Song, Y., Fu, M., Wang, H., & Wan, X. (2023). Wind-wave-current coupled modeling of the effect of artificial island on the coastal environment. Applied Sciences, 13(12), 7171.
Fujimura, A. G., Reniers, A. J., Paris, C. B., Shanks, A. L., MacMahan, J. H., & Morgan, S. G. (2014). Numerical simulations of larval transport into a rip‐channeled surf zone. Limnology and Oceanography, 59(4), 1434-1447.
Fujimura, A. G., Reniers, A. J., Paris, C. B., Shanks, A. L., MacMahan, J. H., & Morgan, S. G. (2018). Mechanisms of cross-shore transport and spatial variability of phytoplankton on a rip-channeled beach. Frontiers in Marine Science, 5, 183.
Gallop, S. L. (2009). Rip current dynamics on an embayed beach (Doctoral dissertation, The University of Waikato).
Gallop, S. L., Bryan, K. R., Pitman, S. J., Ranasinghe, R., & Sandwell, D. (2016). Pulsations in surf zone currents on a high energy mesotidal beach in New Zealand. Journal of Coastal Research, (75), 378-382.
Gaylord, B., Denny, M. W., & Koehl, M. A. R. (2008). Flow forces on seaweeds: field evidence for roles of wave impingement and organism inertia. The Biological Bulletin, 215(3), 295-308.
Gensini, V. A., & Ashley, W. S. (2010). An examination of rip current fatalities in the United States. Natural Hazards, 54, 159-175.
Haas, K. A., Svendsen, I. A., Haller, M. C., & Zhao, Q. (2003). Quasi‐three‐dimensional modeling of rip current systems. Journal of Geophysical Research: Oceans, 108(C7).
Hally‐Rosendahl, K., & Feddersen, F. (2016). Modeling surfzone to inner‐shelf tracer exchange. Journal of Geophysical Research: Oceans, 121(6), 4007-4025.
Hamsan, M. A. S., & Ramli, M. Z. (2021). Monsoonal influences on rip current hazards at recreational beaches along Pahang coastline, Malaysia. Ocean & Coastal Management, 209, 105689.
Hasselmann, K. (1962). On the non-linear energy transfer in a gravity-wave spectrum Part 1. General theory. Journal of Fluid Mechanics, 12(4), 481-500.
Hasselmann, K. (1971). On the mass and momentum transfer between short gravity waves and larger-scale motions. Journal of Fluid Mechanics, 50(1), 189-205.
Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., ... & Walden, H. (1973). Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Ergaenzungsheft zur Deutschen Hydrographischen Zeitschrift, Reihe A.
Hasselmann, S., Hasselmann, K., Allender, J., & Barnett, T. P. (1985). Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part II: Parameterizations of the nonlinear energy transfer for application in wave models. Journal of Physical Oceanography, 15, 1378-1391.
Holman, R. A., Symonds, G., Thornton, E. B., & Ranasinghe, R. (2006). Rip spacing and persistence on an embayed beach. Journal of Geophysical Research: Oceans, 111(C1).
Holman, R. A., Symonds, G., Thornton, E. B., & Ranasinghe, R. (2006). Rip spacing and persistence on an embayed beach. Journal of Geophysical Research: Oceans, 111(C1).
Holthuijsen, L. H., Herman, A., & Booij, N. (2003). Phase-decoupled refraction–diffraction for spectral wave models. Coastal Engineering, 49(4), 291-305.
Horta, J., Oliveira, S., Moura, D., & Ferreira, Ó. (2018). Nearshore hydrodynamics at pocket beaches with contrasting wave exposure in southern Portugal. Estuarine, Coastal and Shelf Science, 204, 40-55.
Houser, C., Trimble, S., Brander, R., Brewster, B. C., Dusek, G., Jones, D., & Kuhn, J. (2017). Public perceptions of a rip current hazard education program:“Break the Grip of the Rip!”. Natural hazards and earth system sciences, 17(7), 1003-1024.
Hsiao, L. F., Chen, D. S., Hong, J. S., Yeh, T. C., & Fong, C. T. (2020). Improvement of the numerical tropical cyclone prediction system at the Central Weather Bureau of Taiwan: TWRF (Typhoon WRF). Atmosphere, 11(6), 657.
Hsu, T. W., & Wen, C. C. (2001). A parabolic equation extended to account for rapidly varying topography. Ocean Engineering, 28(11), 1479-1498.
Hsu, T. W., Liau, J. M., & Ou, S. H. (2006, August). WWM extended to account for wave diffraction on a current over a rapidly varying topography. In In 3rd Chinese-German Joint Symp. Coastal and Ocean Engineering, 8–16 November 2006.
Hsu, T. W., Ou, S. H., & Liau, J. M. (2005). Hindcasting nearshore wind waves using a FEM code for SWAN. Coastal Engineering, 52(2), 177-195.
Hsu, T. W., Ou, S. H., Liau, J. M., Lin, J. G., Kao, C. C., Roland, A., ... & Shin, C. Y. (2006, January). Application of data assimilation for a spectral wave model on unstructured meshes. In International Conference on Offshore Mechanics and Arctic Engineering (Vol. 47470, pp. 469-477).
Huntley, D. A., & Short, A. D. (1992). On the spacing between observed rip currents. Coastal Engineering, 17(3-4), 211-225.
Huntley, D. A., Hendry, M. D., Haines, J., & Greenidge, B. (1988). Waves and rip currents on a Caribbean pocket beach, Jamaica. Journal of Coastal Research, 69-79.
Jacobs, R. P. M. (2010). Non-hydrostatic computations of nearshore hydrodynamics.
Janssen, P. A. (2008). Progress in ocean wave forecasting. Journal of Computational Physics, 227(7), 3572-3594.
Ji, C., Zhang, Q., & Wu, Y. (2019). A comparison study of three-dimensional radiation stress formulations. Coastal Engineering Journal, 61(2), 224-240.
Ji, X., Xu, C., Ren, Z., Yan, S., Wang, D., & Yu, Z. (2023). Study on the Formation Characteristics and Disaster Mitigation Mechanisms of Rip Currents on Arc-Shaped Beach. Journal of Marine Science and Engineering, 11(12), 2381.
Jia, P., Wang, Q., Lu, X., Zhang, B., Li, C., Li, S., ... & Wang, Y. (2018). Simulation of the effect of an oil refining project on the water environment using the MIKE 21 model. Physics and Chemistry of the Earth, Parts A/B/C, 103, 91-100.
Johnson, D., & Pattiaratchi, C. (2004). Transient rip currents and nearshore circulation on a swell‐dominated beach. Journal of Geophysical Research: Oceans, 109(C2).
Kahma, K. K., & Calkoen, C. J. (1992). Reconciling discrepancies in the observed growth of wind-generated waves. Journal of Physical Oceanography, 22(12), 1389-1405.
Keller, J. B. (1958). Surface waves on water of non-uniform depth. Journal of Fluid Mechanics, 4(6), 607-614.
Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., & Janssen, P. A. E. M. (1994). Dynamics and modelling of ocean waves (Vol. 532). UK: Cambridge university press.
Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., & Janssen, P. A. E. M. (1994). Dynamics and modelling of ocean waves (Vol. 532). UK: Cambridge university press.
Kumar, N., & Feddersen, F. (2017). The effect of Stokes drift and transient rip currents on the inner shelf. Part I: No stratification. Journal of Physical Oceanography, 47(1), 227-241.
Lane, E. M., Restrepo, J. M., & McWilliams, J. C. (2007). Wave–current interaction: A comparison of radiation-stress and vortex-force representations. Journal of physical oceanography, 37(5), 1122-1141.
Lascody, R. L. (1998). East central Florida rip current program. National Weather Digest, 22(2), 25-30.
Leatherman, S., & Fletemeyer, J. (Eds.). (2011). Rip currents: Beach safety, physical oceanography, and wave modeling. CRC Press.
Lee, J., Cho, W. C., & Lee, J. L. (2016). The Application of a Rip Current Warning Decision-Process System, Haeundae Beach, South Korea. Journal of Coastal Research, (75), 1167-1171.
Lee, M. T., Wu, C. H., & Ho, Y. F. (2025). Coastal drowning incidents and nearshore environmental conditions in Taiwan. Ocean & Coastal Management, 262, 107545.
Li, C. H., Berner, J., Hong, J. S., Fong, C. T., & Kuo, Y. H. (2020). The Taiwan WRF ensemble prediction system: Scientific description, model-error representation and performance results. Asia-Pacific Journal of Atmospheric Sciences, 56(1), 1-15.
Linares, Á., Wu, C. H., Bechle, A. J., Anderson, E. J., & Kristovich, D. A. (2019). Unexpected rip currents induced by a meteotsunami. Scientific Reports, 9(1), 2105.
Liu, Y., & Wu, C. H. (2019). Lifeguarding Operational Camera Kiosk System (LOCKS) for flash rip warning: Development and application. Coastal engineering, 152, 103537.
Liu, Y., & Wu, C. H. (2022). Rip currents near coastal structures in Lake Michigan: characterization and assessment for warnings. Journal of Great Lakes research, 48(3), 645-658.
Longuet-Higgins, M. S., & Stewart, R. (1961). The changes in amplitude of short gravity waves on steady non-uniform currents. Journal of fluid mechanics, 10(4), 529-549.
Longuet-Higgins, M. S., & Stewart, R. W. (1964, August). Radiation stresses in water waves; a physical discussion, with applications. In Deep sea research and oceanographic abstracts (Vol. 11, No. 4, pp. 529-562). Elsevier.
Luhar, M., & Nepf, H. M. (2011). Flow‐induced reconfiguration of buoyant and flexible aquatic vegetation. Limnology and Oceanography, 56(6), 2003-2017.
Lushine, J. B. (1991). A study of rip current drownings and related weather factors. National weather digest, 16(3), 13-19.
MacMahan, J., Brown, J., & Thornton, E. (2009). Low-cost handheld global positioning system for measuring surf-zone currents. Journal of Coastal Research, 25(3), 744-754.
Maia, J. C. B., de Souza Pereira, P., & Lessa, R. P. (2014). Variação espaço-temporal das correntes de retorno em municípios da região metropolitana do Recife Spatial and temporal variability of rip currents in Recife metropolitan region cities. Quaternary and Environmental Geosciences, 5(2), 166-176.
Maksimovic, V., Lekic, P., Petrovic, M., Jaksic, B., & Spalevic, P. (2019). Experimental analysis of wavelet decomposition on edge detection. Proceedings of the Estonian Academy of Sciences, 68(3).
Marchesiello, P., Benshila, R., Almar, R., Uchiyama, Y., McWilliams, J. C., & Shchepetkin, A. (2015). On tridimensional rip current modeling. Ocean Modelling, 96, 36-48.
Martins, K., Bertin, X., Mengual, B., Pezerat, M., Lavaud, L., Guérin, T., & Zhang, Y. J. (2022). Wave-induced mean currents and setup over barred and steep sandy beaches. Ocean Modelling, 179, 102110.
Maryan, C. C. (2018). Detecting rip currents from images (Master’s thesis, University of New Orleans). University of New Orleans Theses and Dissertations.
Mastenbroek, C., Burgers, G., & Janssen, P. A. E. M. (1993). The dynamical coupling of a wave model and a storm surge model through the atmospheric boundary layer. Journal of physical Oceanography, 23(8), 1856-1866.
McCarroll, R. J., Brander, R. W., Turner, I. L., Power, H. E., & Mortlock, T. R. (2014). Lagrangian observations of circulation on an embayed beach with headland rip currents. Marine Geology, 355, 173-188.
Montes, J., Simarro, G., Benavente, J., Plomaritis, T. A., & Del Río, L. (2018). Morphodynamics assessment by means of mesoforms and video-monitoring in a dissipative beach. Geosciences, 8(12), 448.
Moulton, M., Dusek, G., Elgar, S., & Raubenheimer, B. (2017). Comparison of rip current hazard likelihood forecasts with observed rip current speeds. Weather and Forecasting, 32(4), 1659-1666.
Mouragues, A., Bonneton, P., Castelle, B., & Martins, K. (2021). Headland rip modelling at a natural beach under high-energy wave conditions. Journal of Marine Science and Engineering, 9(11), 1161.
Mouragues, A., Bonneton, P., Castelle, B., Marieu, V., Barrett, A., Bonneton, N., ... & Sous, D. (2020). Field observations of wave-induced headland rips. Journal of Coastal Research, 95(SI), 578-582.
Nam, P. T., Larson, M., Hanson, H., & Hoan, L. X. (2009). A numerical model of nearshore waves, currents, and sediment transport. Coastal Engineering, 56(11-12), 1084-1096.
Nepf, H. M., & Vivoni, E. R. (2000). Flow structure in depth‐limited, vegetated flow. Journal of Geophysical Research: Oceans, 105(C12), 28547-28557.
Perrie, W., Resio, D., & Susilo, A. (2004). Energy flux balances and source term formulation. In 8th International Workshop on Wave Hindcasting and Forecasting’, North Shore, Oahu, Hawaii.
Pierson Jr, W. J., & Moskowitz, L. (1964). A proposed spectral form for fully developed wind seas based on the similarity theory of SA Kitaigorodskii. Journal of geophysical research, 69(24), 5181-5190.
Pitman, S., Gallop, S. L., Haigh, I. D., Mahmoodi, S., Masselink, G., & Ranasinghe, R. (2016). Synthetic imagery for the automated detection of rip currents. Journal of coastal research, (75), 912-916.
Pitman, S., Gallop, S. L., Haigh, I. D., Masselink, G., & Ranasinghe, R. (2016). Wave breaking patterns control rip current flow regimes and surfzone retention. Marine geology, 382, 176-190.
Pond, S. and G.L. Pickard (1998) Introductory Dynamical Oceanography, Butterworth-Heinmann.
Punzo, M., Lanciano, C., Tarallo, D., Bianco, F., Cavuoto, G., De Rosa, R., ... & Marsella, E. (2016). Application of X‐band wave radar for coastal dynamic analysis: Case test of Bagnara Calabra (South Tyrrhenian Sea, Italy). Journal of Sensors, 2016(1), 6236925.
Radermacher, M., De Schipper, M. A., & Reniers, A. J. H. M. (2018). Sensitivity of rip current forecasts to errors in remotely-sensed bathymetry. Coastal Engineering, 135, 66-76.
Rodriguez, A. R., Giddings, S. N., & Kumar, N. (2018). Impacts of nearshore wave‐current interaction on transport and mixing of small‐scale buoyant plumes. Geophysical Research Letters, 45(16), 8379-8389.
Roland, A., Mewis, P., Zanke, U., Ou, S. H., Hsu, T. W., & Liau, J. M. (2005). Verification and improvement of a spectral finite element wave model. In Proc. Of Waves.
Roland, A., Zhang, Y. J., Wang, H. V., Meng, Y., Teng, Y. C., Maderich, V., ... & Zanke, U. (2012). A fully coupled 3D wave‐current interaction model on unstructured grids. Journal of Geophysical Research: Oceans, 117(C11).
Schmidt, W. E., Guza, R. T., & Slinn, D. N. (2005). Surf zone currents over irregular bathymetry: Drifter observations and numerical simulations. Journal of geophysical research: oceans, 110(C12).
Segura, L. E., Hansen, J. E., Lowe, R. J., Symonds, G., & Contardo, S. (2018). Shoreline variability at a low-energy beach: Contributions of storms, megacusps and sea-breeze cycles. Marine Geology, 400, 94-106.
Sembiring, L., Van Dongeren, A., Winter, G., & Roelvink, D. (2016). Dynamic Modelling of Rip Currents for Swimmer Safety on a Wind-Sea–Dominated Mesotidal Beach. Journal of Coastal Research, 32(2), 339-353.
Shepard, F. P., & Inman, D. L. (1950). Nearshore water circulation related to bottom topography and wave refraction. Eos, Transactions American Geophysical Union, 31(2), 196-212.
Shi, W., Wang, Y., Sha, Y., & Wang, Z. (2006). Research on the internal flow of vortex pump. [Journal Name], 37(1), 67–70.
Shin, B., & Kim, K. H. (2018). Wave-induced current analysis based on digital image correlation techniques using UAV. Journal of Coastal Research, (85), 1126-1130.
Short, A. D. (1985). Rip-current type, spacing and persistence, Narrabeen Beach, Australia. Marine geology, 65(1-2), 47-71.
Silva-Cavalcanti, J. S., Costa, M. F., & Pereira, P. S. (2018). Rip currents signaling and users behaviour at an overcrowded urban beach. Ocean & Coastal Management, 155, 90-97.
Sonu, C. J. (1972). Field observation of nearshore circulation and meandering currents. Journal of Geophysical Research, 77(18), 3232-3247.
Soulsby, R. (1997). Dynamics of marine sands: a manual for practical applications.
Sun, Y., Bian, X., Liu, L., Zhu, D., & Li, Z. (2025). Comprehensive assessment of the effects of environmental factors on low‐energy rip currents. Journal of Geophysical Research: Oceans, 130(4), e2024JC022214.
Tanino, Y., & Nepf, H. M. (2008). Lateral dispersion in random cylinder arrays at high Reynolds number. Journal of Fluid Mechanics, 600, 339-371.
Tao, Y., Scully, T., Perera, A. G., Lambert, A., & Chahl, J. (2021). A low redundancy wavelet entropy edge detection algorithm. Journal of Imaging, 7(9), 188.
Tolman, H. L. (2002). User manual and system documentation of WAVEWATCH-III version 2.22 (Technical Note No. 222, 133 pp.). NOAA/NWS/NCEP/MMAB.
Tolman, H. L., & Booij, N. (1998). MODELING WIND WAVES USING WAVENUMIRER-DIRECTION SPECTRA AND) A VARIABLE WAVENUMBER GRID).
Turner, I. L., Whyte, D., Ruessink, B. G., & Ranasinghe, R. (2007). Observations of rip spacing, persistence and mobility at a long, straight coastline. Marine Geology, 236(3-4), 209-221.
Uchiyama, Y., McWilliams, J. C., & Shchepetkin, A. F. (2010). Wave–current interaction in an oceanic circulation model with a vortex-force formalism: Application to the surf zone. Ocean Modelling, 34(1-2), 16-35.
Umgiesser, G., & Bergamasco, A. (1995). Outline of a primitive equations finite element model. Rapporto e Studi, Istituto Veneto di Scienze, Lettere ed Arti, XII, 291–320.
Umgiesser, G., Canu, D. M., Cucco, A., & Solidoro, C. (2004). A finite element model for the Venice Lagoon. Development, set up, calibration and validation. Journal of Marine Systems, 51(1-4), 123-145.
Wang, Y., Zou, Z., Liu, Z., & Song, M. (2024). Vertical Distribution of Rip Currents Generated by Intersecting Waves in a Sandbar–Groin Systems. Journal of Marine Science and Engineering, 12(6), 911.
Warner, J. C., Armstrong, B., He, R., & Zambon, J. B. (2010). Development of a coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system. Ocean modelling, 35(3), 230-244.
Whitham, G. B. (1962). Mass, momentum and energy flux in water waves. journal of Fluid Mechanics, 12(1), 135-147.
Willebrand, J. (1975). Energy transport in a nonlinear and inhomogeneous random gravity wave field. Journal of Fluid Mechanics, 70(1), 113-126.
Wilson, G. W., Özkan‐Haller, H. T., Holman, R. A., Haller, M. C., Honegger, D. A., & Chickadel, C. C. (2014). Surf zone bathymetry and circulation predictions via data assimilation of remote sensing observations. Journal of Geophysical Research: Oceans, 119(3), 1993-2016.
Winter, G., Van Dongeren, A. R., De Schipper, M. A., & de Vries, J. V. T. (2014). Rip currents under obliquely incident wind waves and tidal longshore currents. Coastal Engineering, 89, 106-119.
Witham, G. B. (1974). Linear and Nonlinear Waves (Pure and Applied Mathematics). Wiley-Interscience, 656 pp.
Wright, L. D., & Short, A. D. (1984). Morphodynamic variability of surf zones and beaches: a synthesis. Marine geology, 56(1-4), 93-118.
Wu, G., Liang, B., Li, H., Lee, D. Y., & Guo, W. (2017). Determining How Offshore Shoals Control Rip Current Generation in an Embayed Beach. Journal of Coastal Research, (79), 224-228.
Wu, M., & Moan, T. (2005). Efficient calculation of wave-induced ship responses considering structural dynamic effects. Applied Ocean Research, 27(2), 81-96.
Xu, J., Wang, Y., Mu, B., Du, H., Li, Y., You, Z., ... & Lu, L. (2024). Modeling Rip Current Systems around Multiple Submerged Breakwaters. Journal of Marine Science and Engineering, 12(9), 1627.
Yadhunath, E. M., Seelam, J. K., & Jishad, M. (2022). Rip current occurrences in meso tidal surf zones at a coastal stretch along the central west coast of India. Regional studies in marine science, 51, 102180.
Ye, F., Zhang, Y. J., Wang, H. V., Huang, H., Wang, Z., Liu, Z., & Li, X. (2018). Cross-Scale Baroclinic Simulation of the Effect of Channel Dredging in an Estuarine Setting. Water, 10(2), 163.
Yuan, Y., Yang, H., Yu, F., Gao, Y., Li, B., & Xing, C. (2023). A wave-resolving modeling study of rip current variability, rip hazard, and swimmer escape strategies on an embayed beach. Natural hazards and earth system sciences, 23(11), 3487-3507.
Zhang, H., Shen, D., Bao, S., & Len, P. (2024). Two-Way Coupling of the National Water Model (NWM) and Semi-Implicit Cross-Scale Hydroscience Integrated System Model (SCHISM) for Enhanced Coastal Discharge Predictions. Hydrology, 11(9), 145.
Zhang, Y. J., Ateljevich, E., Yu, H. C., Wu, C. H., & Yu, J. C. (2015). A new vertical coordinate system for a 3D unstructured-grid model. Ocean Modelling, 85, 16-31.
Zhang, Y. J., Fernandez-Montblanc, T., Pringle, W., Yu, H. C., Cui, L., & Moghimi, S. (2023). Global seamless tidal simulation using a 3D unstructured-grid model (SCHISM v5. 10.0). Geoscientific Model Development, 16(9), 2565-2581.
Zhang, Y. J., Stanev, E. V., & Grashorn, S. (2016). Unstructured-grid model for the North Sea and Baltic Sea: validation against observations. Ocean Modelling, 97, 91-108.
Zhang, Y. J., Ye, F., & Huang, H. (2022). SCHISM v5.9 user’s manual: Semi-implicit cross-scale hydroscience integrated system model. Virginia Institute of Marine Science.
Zhang, Y. J., Ye, F., Stanev, E. V., & Grashorn, S. (2016). Seamless cross-scale modeling with SCHISM. Ocean Modelling, 102, 64-81.
Zhang, Y., & Baptista, A. M. (2008). SELFE: A semi-implicit Eulerian–Lagrangian finite-element model for cross-scale ocean circulation. Ocean modelling, 21(3-4), 71-96.
Zhu, D., Qi, R., Hu, P., Su, Q., Qin, X., & Li, Z. (2022). YOLO-Rip: A modified lightweight network for Rip currents detection. Frontiers in Marine Science, 9, 930478.
Construction and Planning Agency, Ministry of the Interior. (2022). Yilan County secondary coastal protection plan.
吳立中、董東璟,2016,航海雷達監測離岸裂流技術之研發(2/2),科技部補助專題研究計畫成果報告期末報告。
李明靜,2016,應用遙測技術評估海灘遊憩風險及安全管理系統之研究,助專題研究計畫成果報告期末報告。
林柏青,2010,臺灣港灣近岸海域漂沙調查研究(1/4),交通部運輸研究所。
林雪美,2007,台灣北海岸海灘安全性之地形動力學研究,2007年地理學者學術研討會,高雄師範大學,共7頁。
林雪美,2009,宜蘭外澳海灘裂流判釋與遊憩安全告示牌設計,國立臺灣師範大學地理學系,交通部觀光局計畫。
林雪美、黃俊彰,2004,雙溪河口沙洲地形變動之成因探討,碩士論文,國立臺灣師範大學地理研究所。
林雪美、黃翊翔、沈淑敏,2009,台灣東北部福隆海灘類型和裂流分布之長期變動研究,第十期地理研究,第47-65頁。
張紘聞(2019),應用 WWIII 波浪模式於極端波高模擬之研究,碩士論文,國立成功大學。
郭少谷、賴彥廷、朱志誠、廖學瑞、吳宏謀,2012,潛堤配合人工養灘之案例探討,第34屆海洋工程研討會論文集,第547-552頁。
郭平巧、許弘莒、張裕弦、劉景毅,2011,臺南市海灘類型與裂流分布之變動探討,第33屆海洋工程研討會論文集,第453-457頁。
蔡政翰、董東璟,2021,海岸裂流監測與預警技術研究(1/3),交通部中央氣象局,委託研究計畫。
蕭仁豪、溫志中、李宗霖、蕭坤欣,2014,海水域場海灘安全性評估研究,第36屆海洋工程研討會論文集,第141-146頁。