| 研究生: |
陳毓軒 Chen, Yu-Xuan |
|---|---|
| 論文名稱: |
評估基於沃爾巴克氏菌衍生之族群取代法及水溝生態監測對埃及斑蚊的數量控制效果 Assessment of Wolbachia based population replacement and ditch ecological surveillance for Aedes aegypti control |
| 指導教授: |
張純純
Jang, Chuen-Chuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技與產業科學系 Department of Biotechnology and Bioindustry Sciences |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 埃及斑蚊 、登革熱 、沃爾巴克氏菌 、遙控無人履帶車系統 、陽性水溝 |
| 外文關鍵詞: | Aedes aegypti, Dengue fever, Wolbachia, Unmanned Ground Vehicle Systems, Positive ditch |
| 相關次數: | 點閱:69 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在南臺灣,埃及斑蚊是傳播登革熱病毒的主要媒介,此疾病會造成感染者關節疼痛、發高燒等症狀,嚴重時更會造成死亡,故國際間常用的昆蟲不孕技術被我國納入考量。當使用廣泛存在於節肢動物體的沃爾巴克氏菌感染埃及斑蚊時,可延伸出兩種生物防治策略,第一種是釋放大量攜帶沃爾巴克氏菌的雄蚊與野生雌蚊交配,攜帶沃爾巴克氏菌的雄蚊精子會影響受精卵發育,使得野生雌蚊交配後產下的卵無法孵化,抑制野生族群的數量。第二種是同時釋放攜帶沃爾巴克氏菌的雌、雄蚊,利用沃爾巴克氏菌能母系垂直傳染及營救受精卵的特性,放大攜帶沃爾巴克氏菌的族群,進而取代野生埃及斑蚊族群。再者,有文獻指出沃爾巴克氏菌能抑制埃及斑蚊體內複製登革熱病毒的能力,達到難以傳染人類登革熱的病毒量,藉此壓制登革熱病例數。本篇研究針對族群取代法在實驗室進行測試,同時本研究第二部分利用遙控無人履帶車系統(Unmanned Ground Vehicle Systems-UGVs) 探勘高雄市歷年好發登革熱的行政區,對病媒蚊生態進行追蹤及投藥,並透過成蚊密度監測結果來分析UGVs的影響力,若未來UGVs能夠掛載小蚊籠進入陽性水溝投放攜帶沃爾巴克氏菌的埃及斑蚊或許能夠達成「以蚊尋蚊、以蚊滅蚊」的構想。
Aedes aegypti is the vector of dengue in southern Taiwan. Dengue can cause such as joint pain and high fever. Therefore, commonly used sterile insect technology in the world has been taken into consideration in Taiwan. When symbiotic bacterium – Wolbachia infects Aedes aegypti, two biological control strategies will be established. The first is population suppression, which releases a lot of Wolbachia - carrying males to mate with wild type females, the sperm from Wolbachia - carrying males will make the eggs produce by wild type female cannot hatch, that can suppress the density of wild type group. The second strategy is population replacement, Wolbachia can vertically infect next generation by females and rescue fertilized eggs. As release a lot of Wolbachia - carrying males and females, the population will keeping amplify and replace wild type groups someday. There are some report shows Wolbachia can reduce the replication ability of dengue virus in Aedes aegypti, making the titers of dengue virus cannot be spread between humanity. This study also used UGVs (Unmanned Ground Vehicle Systems) to inspect the ditches of five administrative districts that dengue fever has been prevalent over the years in Kaohsiung. After the UGVs inspection and immediately administer the drug for positive ditches, the density of vector mosquitoes decreased significantly next week. If we use UGVs to inspect the positive ditches and release Wolbachia - carrying Aedes aegypti. Maybe we can achieve the concept of finding mosquitoes with mosquitoes and eliminating mosquitoes with mosquitoes.
Aragão, F. V., Cavicchioli Zola, F., Nogueira Marinho, L. H., De Genaro Chiroli, D. M., Braghini Junior, A., Colmenero, J. C. Choice of unmanned aerial vehicles for identification of mosquito breeding sites. Geospatial Health 1, 15, 2020.
Brownstein, J. S., Hett, E., O'Neill, S. L. The potential of virulent Wolbachia to modulate disease transmission by insects. Journal of Invertebrate Pathology 84, 24–29, 2003.
Balhorn, R., The protamine family of sperm nuclear proteins. Genome Biology 8, 227, 2007.
Beckmann, J. F., Bonneau, M., Chen, H., Hochstrasser, M., Poinsot, D., Merçot, H., Weill, M., Sicard, M., Charlat, S. The Toxin–Antidote Model of Cytoplasmic Incompatibility: Genetics and Evolutionary Implications. Trends in Genetics 3, 175-185, 2019.
Beckmann, J. F., Sharma, G. D., Mendez, L., Chen, H., Hochstrasser, M. The Wolbachia cytoplasmic incompatibility enzyme CidB targets nuclear import and protamine-histone exchange factors. eLife 8, e50026, 2019.
Beebe, N. W., Pagendam, D., Trewin, B. J., Boomer, A., Bradford, M., Ford, A., et al. Releasing incompatible males drives strong suppression across populations of wild and Wolbachia-carrying Aedes aegypti in Australia. Proceedings of the National Academy of Sciences of the United States of America 118, e2106828118, 2021.
Chen, Y-A., Lai, Y-T., Wu, K-C., Yen, T-Y., Chen, C-Y., Tsai, K-H. Using UPLC–MS/MS to Evaluate the Dissemination of Pyriproxyfen by Aedes Mosquitoes to Combat Cryptic Larval Habitats after Source Reduction in Kaohsiung in Southern Taiwan. Insects 11, 251, 2020.
Crawford, J.E., Clarke, D.W., Criswell, V. et al. Efficient production of male Wolbachia-infected Aedes aegypti mosquitoes enables large-scale suppression of wild populations. Nature Biotechnology 38, 482–492, 2020.
Case, E., Shragai, T., Harrington, L., Ren, Y., Morreale, S., Erickson, D. Evaluation of unmanned aerial vehicles and neural networks for integrated mosquito management of Aedes albopictus (Diptera: Culicidae). Journal of Medical Entomology 57, 1588-1595, 2020.
Cheng, Y-S. National University of Singapore, Engineering Design & Innovation Centre. Robotic Drain Crawler for Dengue Prevention. NUS, 2022. https://cde.nus.edu.sg/idp/project-themes/innovating-for-smarter-living/robotic-drain-crawler-for-dengue-prevention/.
Chen, Y-X. Pan, C-Y., Chen, B-Y., Jeng, S-W., Chen, C-H., Huang, J-J., Chen, C-D., Liu, W-L. Use of unmanned ground vehicle systems in urbanized zones: A study of vector Mosquito surveillance in Kaohsiung. PLOS Neglected Tropical Diseases 17, e0011346, 2023.
Denlinger, D. L., Armbruster, P. A. Mosquito diapause. Annual review of entomology 59, 73-93, 2014.
Dalpada do, R., Amarasinghe, D., Gunathilaka, N. Water quality characteristics of breeding habitats in relation to the density of Aedes aegypti and Aedes albopictus in domestic settings in Gampaha district of Sri Lanka. Acta Tropica 229, 106339, 2022.
Ferree, P. M., Sullivan, W. A. Genetic Test of the Role of the Maternal Pronucleus in Wolbachia-Induced Cytoplasmic Incompatibility in Drosophila melanogaster. GENETICS 173, 839-847, 2006.
Faraji, A., Haas-Stapleton, E., Sorensen, B., Scholl, M., Goodman, G., Buettner, J. et al. Toys or Tools? Utilization of unmanned aerial systems in mosquito and vector control programs. Journal of Economic Entomology 114, 1896-1909, 2021.
Garcia, G.A., Hoffmann, A.A., Maciel-de-Freitas, R. et al. Aedes aegypti insecticide resistance underlies the success (and failure) of Wolbachia population replacement. Scientific Reports 10, 63, 2020.
Guowu, B., Xu, Yao., Lu, Peng., Xie, Yan., Xi, Z-Y. The Endosymbiotic Bacterium Wolbachia Induces Resistance to Dengue Virus in Aedes aegypti. PLOS Pathogens 6, e1000833, 2010.
Gubler, D. J. Dengue, Urbanization and Globalization: The Unholy Trinity of the 21(st) Century. Tropical Medicine and Health 39, 3-11, 2012.
Gonzalez-de-Santos, P., Ribeiro, A., Fernandez-Quintanilla, C. et al. Fleets of robots for environmentally-safe pest control in agriculture. Precision Agriculture 18, 574–614, 2017.
Goodman, H., Egizi, A., Fonseca, D. M., Leisnham, P. T., LaDeau, S. L. Primary blood-hosts of mosquitoes are influenced by social and ecological conditions in a complex urban landscape. Parasites & Vectors 11, 218, 2018.
Huang, M., Luo, J., Hu, L., Zheng, B., Yu, J., Assessing the efficiency of Wolbachia driven Aedes mosquito suppression by delay differential equations. Journal of Theoretical Biology 440, 1-11, 2018.
Iturbe-Ormaetxe, I., Walker, T., O' Neill, S.L. Wolbachia and the biological control of mosquito-borne disease. European Molecular Biology Organization reports 12, 508-518, 2011.
Jeffery, JA. L., Thi Yen, N., Nam, V. S., Nghia, L. T., Hoffmann, A.A., Kay, B. H., et al. Characterizing the Aedes aegypti Population in a Vietnamese Village in Preparation for a Wolbachia-Based Mosquito Control Strategy to Eliminate Dengue. PLOS Neglected Tropical Diseases 3, e552, 2019.
Jiang, Y., He, X., Song, J., Liu, Y., Wang, C., Li, T., Qi, P., Yu, C., Chen, F. Comprehensive assessment of intelligent unmanned vehicle techniques in pesticide application: A case study in pear orchard. Frontiers in Plant Science 13, 959429, 2022.
Lin, C., Huang, Y., Shu, P., Wu, H., Lin, Y., Yeh, T., Liu, H., Liu, C., Lei, H. Characteristic of Dengue Disease in Taiwan: 2002–2007. The American Society of Tropical Medicine and Hygiene 82, 731-739, 2021.
Liu, W-L., Yu, H-Y., Chen, Y-X., Chen, B-Y., Leaw, S-N., et al. Lab-scale characterization, and semi-field trials of Wolbachia Strain wAlbB in a Taiwan Wolbachia introgressed Ae. aegypti strain. PLOS Neglected Tropical Diseases 16, e0010084, 2022.
McMeniman, C. J., Lane, R. V., Cass, B. N., Fong, AW. C., Manpreet, S., et al. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science 323, 141–144, 2009.
Moreira, L. A., Iturbe-Ormaetxe, I., Jeffery, J. A., Lu, G. J., Pyke, A. T., et al. A Wolbachia symbiont in Aedes aegypti limits infection with Dengue, Chikungunya, and Plasmodium. Cell 139, 1268–1278, 2009.
Matthias, E., Cortes, F., Teixeira de Siqueira Filha, N., Araújo de França, G.V., Degroote, S., Braga, C. et al. Scoping review on vector-borne diseases in urban areas: transmission dynamics, vectorial capacity and co-infection. Infectious Diseases of Poverty 7, 90, 2018.
Ong, J., Chong, C-S., Yap, G., Lee, C. Abdul Razak, M. A., Chiang, S., Ng, L-C. Gravitrap deployment for adult Aedes aegypti surveillance and its impact on dengue cases. PLOS Neglected Tropical Diseases 14, e0008528, 2020.
Pan, X-L., Zhou, G-L., Wu, J-H., Bian, G., Lu, P., Raikhel, A-S., Xi, Z-Y. Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. Proceedings of the National Academy of Sciences of the United States of America 109, E23-E31, 2012.
Pai, H-H., Hsu, E-L. The Establishment of Taiwan Environmental Vector and Pest Monitoring and Control Technology Plan 2018-2020. Taiwan Executive Yuan Environmental Protection Agency, project number: 109D003, 2020. https://www.tcsb.gov.tw/sp-research-cont-302-f33b3-1.html.
Pan, C-Y., Cheng, L., Liu, W-L., Su, M-P., Ho, H-P, Liao, C-H, Chang, J-H, Yang, Y-C., Hsu, C-C., Huang, J-J., Chen, C-H. Comparison of Fan-Traps and Gravitraps for Aedes Mosquito Surveillance in Taiwan. Frontiers in Public Health 17, 778736, 2022.
Pai, H-H., Chang, C-Y., Lin, K-C., et al. Rapid pesticide resistance bioassays for three major urban insects in Taiwan. Research Square, version1, 2023.
Rathke, C., Baarends, W. M., Awe, S., Renkawitz-Pohl, R. Chromatin dynamics during spermiogenesis. Biochimica et Biophysica Acta 1839, 155-168, 2014.
Romeo-Aznar, V., Paul, R., Telle, O., Pascual, M. Mosquito-borne transmission in urban landscapes: the missing link between vector abundance and human density. Proceedings of the Royal Society 285, 1884, 2018.
Ross, P.A. Callahan, A.G., Yang, Q., Jasper, M. Arif, M.A.K., Afizah, A.N., Nazni, W.A., Hoffmann, A.A. An elusive endosymbiont: Does Wolbachia occur naturally in Aedes aegypti? Ecology and Evolution 10, 1581–1591, 2020.
Sota, T., Mogi, M., Survival time and resistance to desiccation of diapause and non-diapause eggs of temperate Aedes (Stegomyia) mosquitoes. The Netherlands Entomological Society 63, 155-161, 1992.
Sarwar, M.S., Jahan, N., Ali, A. et al. Establishment of Wolbachia infection in Aedes aegypti from Pakistan via embryonic microinjection and semi-field evaluation of general fitness of resultant mosquito population. Parasites & Vectors 15, 191, 2022.
Semwal, A., Melvin, L. M. J., Mohan, R. E., Ramalingam, B., Pathmakumar, T. AI-Enabled Mosquito Surveillance and Population Mapping Using Dragonfly Robot. Sensors (Basel) 22, 4921, 2022.
Troyo, A., Fuller, D. O., Calderón-Arguedas, O., Solano, M. E., Beier, J. C. Urban structure and dengue fever in Puntarenas, Costa Rica. Singapore Journal of Tropical Geography 30, 265-282, 2009.
Tsai, P-J., Teng, H-J. Role of Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse) in local dengue epidemics in Taiwan. Biomed Central Genomics Infectious Diseases 16, 662, 2016.
Wang, C-H., Chang, N-T., Wu, H-H., Ho, C-M. Integrated control of the dengue vector Aedes aegypti in Liu-Chiu village, Ping-Tung County, Taiwan. Journal of the American Mosquito Control Association 16, 93-9, 2000.
Wu, H-H, Wang, C-Y., Teng, H-J., Lin, C., Lu, L-C., Jian, S-W., Chang, N-T., Wen, T-H., Wu, J-W., Liu, D-P., Lin, L-J., Norris, D. E., Wu, H-S. A dengue vector surveillance by human population-stratified ovitrap survey for Aedes (Diptera: Culicidae) adult and egg collections in high dengue-risk areas of Taiwan. Journal of Medical Entomology 50, 261-9, 2013.
Xi, Z-Y., Khoo, C. C. H., Dobson, S. L. Wolbachia Establishment, and Invasion in an Aedes aegypti Laboratory Population. Science 310, 326-328, 2005.
Yang, C-F., Hou, J-N., Chen, T-H., Chen, W-J. Discriminable roles of Aedes aegypti and Aedes albopictus in establishment of dengue outbreaks in Taiwan. Acta Tropica 130, 17-23, 2014.
Zheng, X-Y., Zhang, D-J., Li, Y-J., Yang, C., Wu, Y., Liang, X., Liang, Y-K., Pan, X-L., Hu, L-C., Sun, Q., Wang, X-H., Wei, Y-Y., Zhu, J., Qian, W., Yan, Z-Q., Parker, A. G., Gilles, J. R. L., Bourtzis, K., Bouyer, J., Tang, M., Zheng, B., Yu, J-S., Liu, J-L., Zhuang, J-J., Hu, Z-G., Zhang, M., Gong, J-T., Hong, X-Y., Zhang, Z-B., Lin, L-F., Liu, Q-Y., Hu, Z-Y., Wu, Z-D., Baton, L. A., Hoffmann, A. A., Xi, Z-Y. Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature 572, 56-61, 2019.
Zhu, F., Lavine, L., O'Neal, S., Lavine, M., Foss, C., Walsh, D. Insecticide resistance and management strategies in urban ecosystems. Insects 7, 2, 2016.