| 研究生: |
鄭子健 Cheng, Tzu-chien |
|---|---|
| 論文名稱: |
運用氣液相溶膠凝膠法強化高深寬比之PDMS微結構 Fabrication of PDMS HARMs with Improved Mechanical Strength via Gas-liquid Phase Sol-gel Process |
| 指導教授: |
莊怡哲
Juang, Yi-Je |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 157 |
| 中文關鍵詞: | polydimethyl siloxane(PDMS) 、溶膠凝膠法 、微熱壓/壓縮成型 、高深寬比微結構 |
| 外文關鍵詞: | sol-gel process, high aspect ratio microstructures (HARMs), polydimethyl siloxane (PDMS), hot microembossing/compression molding |
| 相關次數: | 點閱:103 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討以氣液相溶膠凝膠法(gas-liquid phase sol-gel process)提升polydimethyl siloxane(PDMS)的機械強度,使之能成為高分子微米加工之模具。首先,將PDMS母模浸泡 tetraethylortho silicate(TEOS)溶液中10分鐘,經丙酮沖洗後再與去離子水和aminomethyl propanol-95(AMP-95)反應三天。實驗結果顯示,此方法不但成功地提升了PDMS的機械強度,使用硬化後的PDMS模具也可以熱壓成型法準確地複製出大面積,具有微結構的PMMA成品,而PMMA成品的微結構,其深寬比甚至可以達到8以上。PDMS的機械強度隨著強制反應時間的增加而持續快速增大;而自然反應時間的增加,PDMS的機械強度先是逐漸增大而後趨於緩慢增大。透過粒徑量測亦發現粒徑的大小與PDMS的機械強度有正向的關係。本研究所提出PDMS硬化的方法,不僅為一簡單、有效的模具製作方法,同時具備保有silicon母模的優點。
In this study, we proposed and demonstrated a gas-liquid phase, sol-gel process to enhance the mechanical strength of polydimethyl siloxane (PDMS), which can be utilized for polymer microfabrication. The PDMS mold was first soaked in tetraethylortho silicate (TEOS) for 10 minutes, followed by reacting with DI water and aminomethyl propanol-95 (AMP-95) for 3 days. The results showed that the mechanical strength of the PDMS mold was substantially increased and the PMMA replica with great replication accuracy was obtained through hot embossing process. Moreover, PMMA microstructures with aspect ratio larger than 8 was fabricated using the hardened PDMS mold. For forced reaction, the mechanical strength of PDMS mold increases as the reaction time increases; for the unforced reaction, the mechanical strength increases initially as the reaction time increases but seemingly levels off afterwards. It is also observed that there is a positive relationship between the mechanical strength and particle size. The developed technique not only provides a simple, cost-effective, reliable and relatively fast approach for mold making but also allows preservation of the SU8/silicon mother mold.
Malek, C.K. and Saile, V., "Applications of LIGA technology to precision manufacturing of high-aspect-ratio micro-components and -systems: a review", Microelectronics Journal, 35, 131-143, (2004).
2. Becker, H. and Locascio, L.E., "Polymer microfluidic devices", Talanta, 56, 267-287, (2002).
3. Lee, L.J., "BioMEMS and micro-/nano-processing of polymers - An overview", Journal of the Chinese Institute of Chemical Engineers, 34, 25-46, (2003).
4. Whitesides, G.M., "The origins and the future of microfluidics", Nature, 442, 368-373, (2006).
5. 施佑澤, "探討以微熱成型法製作高深寬比之高分子微結構", 國立成功大學化工所碩士論文, (2007).
6. Ehrfeld, W. and Munchmeyer, D., "3-DIMENSIONAL MICROFABRICATION USING SYNCHROTRON RADIATION", Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment, 303, 523-531, (1991).
7. Ballandras, S. and Hauden, D., "MICROTECHNICAL APPLICATIONS OF DEEP-ETCH PHOTOLITHOGRAPHY USING UV AND SYNCHROTRON-RADIATION", Annales De Physique, 19, 73-85, (1994).
8. Lehr, H. and Ehrfeld, W., "ADVANCED MICROSTRUCTURE PRODUCTS BY SYNCHROTRON-RADIATION LITHOGRAPHY", Journal De Physique Iv, 4, 229-236, (1994).
9. Terakado, S., Goto, T., Ogura, M., Kaneda, K., Kitamura, O., and Suzuki, S., "NEW MICROFABRICATION TECHNIQUE BY SYNCHROTRON RADIATION-EXCITED ETCHING - USE OF NONCONTACT MASK ON A SUBMICROMETER SCALE", Applied Physics Letters, 64, 1659-1661, (1994).
10. Ballandras, S., Daniau, W., Basrour, S., Robert, L., Rouillay, M., Blind, P., Bernede, P., Robert, D., Rocher, S., Hauden, D., Megtert, S., Labeque, A., Zewen, L., Dexpert, H., Comes, R., Rousseaux, F., Ravert, M.F., and Launois, H., "DEEP-ETCH X-RAY-LITHOGRAPHY USING SILICON-GOLD MASKS FABRICATED BY DEEP-ETCH UV LITHOGRAPHY AND ELECTROFORMING", Journal of Micromechanics and Microengineering, 5, 203-208, (1995).
11. Terakado, S., Goto, T., Ogura, M., Kaneda, K., Kitamura, O., Suzuki, S., Nakao, M., and Tanaka, K., "New microfabrication technique an a submicrometer scale by synchrotron radiation-excited etching", Journal of Vacuum Science & Technology B, 13, 2175-2178, (1995).
12. Ehrfeld, W. and Schmidt, A., "Recent developments in deep x-ray lithography", Journal of Vacuum Science & Technology B, 16, 3526-3534, (1998).
13. Matsuda, T. and Deguchi, K., "Microfabrication technologies using synchrotron radiation", Ntt Review, 10, 40-46, (1998).
14. Tolfree, D.W.L., "Microfabrication using synchrotron radiation", Reports on Progress in Physics, 61, 313-351, (1998).
15. Cheng, Y., Shew, B.Y., Lin, C.Y., Wei, D.H., and Chyu, M.K., "Ultra-deep LIGA process", Journal of Micromechanics and Microengineering, 9, 58-63, (1999).
16. Kupka, R.K., Bouamrane, F., Cremers, C., and Megtert, S., "Microfabrication: LIGA-X and applications", Applied Surface Science, 164, 97-110, (2000).
17. Katoh, T., Nishi, N., Fukagawa, M., Ueno, H., and Sugiyama, S., "Direct writing for three-dimensional microfabrication using synchrotron radiation etching", Sensors and Actuators a-Physical, 89, 10-15, (2001).
18. Katoh, T., Yamaguchi, D., Satoh, Y., Ikeda, S., Aoki, Y., Washio, M., and Tabata, Y., "Microfabrication of crosslinked polytetrafluoroethylene using synchrotron radiation direct photo-etching", Applied Surface Science, 186, 24-28, (2002).
19. Katoh, T., Zhang, Y.P., Kagoshima, Y., Tsusaka, Y., and Matsui, J., "Direct microfabrication using an X-ray micro-beam", Sensors and Actuators a-Physical, 97-8, 725-728, (2002).
20. Hirata, Y., "LIGA process - micromachining technique using synchrotron radiation lithography - and some industrial applications", Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 208, 21-26, (2003).
21. Griffiths, S.K., Losey, M.W., Hachman, J.T., Skala, D.M., Hunter, L.L., Yang, N.Y.C., Boehme, D.R., Korellis, J.S., Aigeldinger, G., Lu, W.Y., Kelly, L.J., Hekmaty, M.A., McLean, D.E., Yang, P.C.Y., Hauck, C.A., and Friedmann, T.A., "Resist substrate studies for LIGA microfabrication with application to a new anodized aluminum substrate", Journal of Micromechanics and Microengineering, 15, 1700-1712, (2005).
22. Kato, Y., Kanda, K., Haruyama, Y., and Matsui, S., "Etching of poly(tetrafluoroethylene) sheet by synchrotron radiation exposure in soft X-ray region", Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 45, 7978-7979, (2006).
23. Mappes, T., Achenbach, S., and Mohr, J., "X-ray lithography for devices with high aspect ratio polymer submicron structures", Microelectronic Engineering, 84, 1235-1239, (2007).
24. Lee, K.Y., LaBianca, N., Rishton, S.A., Zolgharnain, S., Gelorme, J.D., Shaw, J., and Chang, T.H.P., "Micromachining applications of a high resolution ultrathick photoresist", Journal of Vacuum Science & Technology B, 13, 3012-3016, (1995).
25. Lorenz, H., Despont, M., Fahrni, N., LaBianca, N., Renaud, P., and Vettiger, P., "SU-8: a low-cost negative resist for MEMS", Journal of Micromechanics and Microengineering, 7, 121-124, (1997).
26. Lorenz, H., Despont, M., Fahrni, N., Brugger, J., Vettiger, P., and Renaud, P., "High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS", Sensors and Actuators a-Physical, 64, 33-39, (1998).
27. Conedera, V., Le Goff, B., and Fabre, N., "Potentialities of a new positive photoresist for the realization of thick moulds", Journal of Micromechanics and Microengineering, 9, 173-175, (1999).
28. Dumbravescu, N., "Experiments for 3-D structuring of thick resists by gray tone lithography", Materials Science in Semiconductor Processing, 3, 569-573, (2000).
29. Tseng, F.G. and Yu, C.S., "High aspect ratio ultrathick micro-stencil by JSR THB-430N negative UV photoresist", Sensors and Actuators a-Physical, 97-8, 764-770, (2002).
30. Liu, J., Cai, B., Zhu, J., Ding, G., Zhao, X., Yang, C., and Chen, D., "Process research of high caspect ratio microstructure using SU-8 resist", Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 10, 265-268, (2004).
31. Yang, C.R., Hsieh, G.W., Hsieh, Y.S., and Lee, Y.D., "Microstructuring characteristics of a chemically amplified photoresist synthesized for ultra-thick UV-LIGA applications", Journal of Micromechanics and Microengineering, 14, 1126-1134, (2004).
32. Zhang, J., Chan-Park, M.B., and Conner, S.R., "Effect of exposure dose on the replication fidelity and profile of very high aspect ratio microchannels in SU-8", Lab on a Chip, 4, 646-653, (2004).
33. Lawes, R.A., "Manufacturing tolerances for UV LIGA using SU-8 resist", Journal of Micromechanics and Microengineering, 15, 2198-2203, (2005).
34. Liu, G., Tian, Y., and Kan, Y., "Fabrication of high-aspect-ratio microstructures using SU8 photoresist", Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 11, 343-346, (2005).
35. Luo, Y., Wang, X.D., Liu, C., Lou, Z.F., Chu, D.N., and Yu, D.H., "Swelling of SU-8 structure in Ni mold fabrication by UV-LIGA technique", Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 11, 1272-1275, (2005).
36. Shew, B.Y., Kuo, C.H., Huang, Y.C., and Tsai, Y.H., "UV-LIGA interferometer biosensor based on the SU-8 optical waveguide", Sensors and Actuators a-Physical, 120, 383-389, (2005).
37. Zhou, W., Huang, Y., Menard, E., Aluru, N.R., Rogers, J.A., and Alleyne, A.G., "Mechanism for stamp collapse in soft lithography", Applied Physics Letters, 87, (2005).
38. Fu, C. and Huang, H., "Different methods for the fabrication of UV-LIGA molds using SU-8 with tapered de-molding angles", Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 13, 293-298, (2007).
39. Lawes, R.A., "Manufacturing costs for microsystems/MEMS using high aspect ratio microfabrication techniques", Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 13, 85-95, (2007).
40. Lu, C.H., Yin, X.F., and Wang, M., "Fabrication of high aspect ratio metallic microstructures on ITO glass substrate using reverse-side exposure of SU-8", Sensors and Actuators a-Physical, 136, 412-416, (2007).
41. Lu, H., Pillans, B., Lee, J.C., and Lee, J.B., "High aspect ratio air core solenoid inductors using an improved UV-LIGA process with contrast enhancement material", Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 13, 237-243, (2007).
42. Sayah, A., Parashar, V.K., and Gijs, M.A.M., "LF55GN photosensitive flexopolymer: A new material for ultrathick and high-aspect-ratio MEMS fabrication", Journal of Microelectromechanical Systems, 16, 564-570, (2007).
43. Favre, E., "Swelling of crosslinked polydimethylsiloxane networks by pure solvents: Influence of temperature", European Polymer Journal, 32, 1183-1188, (1996).
44. Richter, K., Orfert, M., Howitz, S., and Thierbach, S., "Deep plasma silicon etch for microfluidic applications", Surface & Coatings Technology, 116, 461-467, (1999).
45. Chung, C.K., Lu, H.C., and Law, T.H., "High aspect ratio silicon trench fabrication by inductively coupled plasma", Microsystem Technologies, 6, 106-108, (2000).
46. Tian, W.C., Weigold, J.W., and Pang, S.W., "Comparison of Cl-2 and F-based dry etching for high aspect ratio Si microstructures etched with an inductively coupled plasma source", Journal of Vacuum Science & Technology B, 18, 1890-1896, (2000).
47. Pandhumsoporn, T., Wang, L., Feldbaum, M., Gadgil, P., Puech, M., and Maquin, P., "High etch rate, deep anisotropic plasma etching of silicon for MEMS fabrication", Vide-Science Technique Et Applications, 56, 673-+, (2001).
48. Li, Y.G., Minoru, S., and Kazuhiro, H., "Micro-optical components based on silicon mold technology", Optics and Lasers in Engineering, 41, 545-552, (2004).
49. Zhang, C.C., Yang, C.S., and Ding, D.F., "Deep reactive ion etching of PMMA", Applied Surface Science, 227, 139-143, (2004).
50. Zhao, Y. and Cui, T., "SOI wafer mold with high-aspect-ratio microstructures for hot embossing process", Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 10, 544-546, (2004).
51. Marty, F., Rousseau, L., Saadany, B., Mercier, B., Francais, O., Mita, Y., and Bourouina, T., "Advanced etching of silicon based on deep reactive ion etching for silicon high aspect ratio microstructures and three-dimensional micro- and nanostructures", Microelectronics Journal, 36, 673-677, (2005).
52. Gao, J.X., Yeo, L.P., Chan-Park, M.B., Miao, J.M., Yan, Y.H., Sun, J.B., Lam, Y.C., and Yue, C.Y., "Antistick postpassivation of high-aspect ratio silicon molds fabricated by deep-reactive ion etching", Journal of Microelectromechanical Systems, 15, 84-93, (2006).
53. Takahata, K., Shibaike, N., and Guckel, H., "High-aspect-ratio WC-Co microstructure produced by the combination of LIGA and micro-EDM", Microsystem Technologies, 6, 175-178, (2000).
54. Benavides, G.L., Bieg, L.F., Saavedra, M.P., and Bryce, E.A., "High aspect ratio meso-scale parts enabled by wire micro-EDM", Microsystem Technologies, 8, 395-401, (2002).
55. Lim, H.S., Wong, Y.S., Rahman, M., and Lee, M.K.E., "A study on the machining of high-aspect ratio micro-structures using micro-EDM", Journal of Materials Processing Technology, 140, 318-325, (2003).
56. Liao, Y.S., Chen, S.T., Lin, C.S., and Chuang, T.J., "Fabrication of high aspect ratio microstructure arrays by micro reverse wire-EDM", Journal of Micromechanics and Microengineering, 15, 1547-1555, (2005).
57. Schoth, A., Forster, R., and Menz, W., "Micro wire EDM for high aspect ratio 3D microstructuring of ceramics and metals", Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 11, 250-253, (2005).
58. Cao, D.M., Jiang, J., Yang, R., and Meng, W.J., "Fabrication of high-aspect-ratio microscale mold inserts by parallel mu EDM", Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 12, 839-845, (2006).
59. Sumita, M., Shizuma, T., Miyasaka, K., and Ishikawa, K., "EFFECT OF REDUCIBLE PROPERTIES OF TEMPERATURE, RATE OF STRAIN, AND FILLER CONTENT ON THE TENSILE YIELD STRESS OF NYLON 6 COMPOSITES FILLED WITH ULTRAFINE PARTICLES", Journal of Macromolecular Science-Physics, B22, 601-618, (1983).
60. Burnside, S.D. and Giannelis, E.P., "SYNTHESIS AND PROPERTIES OF NEW POLY(DIMETHYLSILOXANE) NANOCOMPOSITES", Chemistry of Materials, 7, 1597-1600, (1995).
61. Messersmith, P.B. and Giannelis, E.P., "SYNTHESIS AND BARRIER PROPERTIES OF POLY(EPSILON-CAPROLACTONE)-LAYERED SILICATE NANOCOMPOSITES", Journal of Polymer Science Part a-Polymer Chemistry, 33, 1047-1057, (1995).
62. Ishida, H., Campbell, S., and Blackwell, J., "General approach to nanocomposite preparation", Chemistry of Materials, 12, 1260-1267, (2000).
63. Bergna, H.E., COLLOID CHEMISTRY OF SILICA - AN OVERVIEW, in Colloid Chemistry of Silica. 1994. p. 1-47.
64. Arriagada, F.J. and Osseoasare, K., "SYNTHESIS OF NANOSIZE SILICA IN AEROSOL OT REVERSE MICROEMULSIONS", Journal of Colloid and Interface Science, 170, 8-17, (1995).
65. Chang, C.L. and Fogler, H.S., "Kinetics of silica particle formation in nonionic W/O microemulsions from TEOS", Aiche Journal, 42, 3153-3163, (1996).
66. Chang, C.L. and Fogler, H.S., "Controlled formation of silica particles from tetraethyl orthosilicate in nonionic water-in-oil microemulsions", Langmuir, 13, 3295-3307, (1997).
67. Arriagada, F.J. and Osseo-Asare, K., "Synthesis of nanosize silica in a nonionic water-in-oil microemulsion: Effects of the water/surfactant molar ratio and ammonia concentration", Journal of Colloid and Interface Science, 211, 210-220, (1999).
68. Kim, S.H., Kim, K.D., Song, K.Y., and Kim, H.T., "Formation and characterization of TiO2-coated SiO2 nanoparticles by W/O microemulsion method", Journal of Industrial and Engineering Chemistry, 10, 435-441, (2004).
69. Stern, S.A. and Walawend.Wp, "ANALYSIS OF MEMBRANE SEPARATION PARAMETERS", Separation Science, 4, 129-&, (1969).
70. Suwandi, M.S. and Stern, S.A., "TRANSPORT OF HEAVY ORGANIC VAPORS THROUGH SILICONE-RUBBER", Journal of Polymer Science Part B-Polymer Physics, 11, 663-681, (1973).
71. Haddad, R.J., Cook, S.D., and Brinker, M.R., "A COMPARISON OF 3 VARIETIES OF NONCEMENTED POROUS-COATED HIP-REPLACEMENT", Journal of Bone and Joint Surgery-British Volume, 72, 2-8, (1990).
72. Jia, L.D. and Xu, J.P., "A SIMPLE METHOD FOR PREDICTION OF GAS-PERMEABILITY OF POLYMERS FROM THEIR MOLECULAR-STRUCTURE", Polymer Journal, 23, 417-425, (1991).
73. Wen, J.Y. and Wilkes, G.L., "Organic/inorganic hybrid network materials by the sol-gel approach", Chemistry of Materials, 8, 1667-1681, (1996).
74. Zarzycki, J., "Past and present of sol-gel science and technology", Journal of Sol-Gel Science and Technology, 8, 17-22, (1997).
75. Ochi, M. and Takahashi, R., "Phase structure and thermomechanical properties of primary and tertiary amine-cured epoxy/silica hybrids", Journal of Polymer Science Part B-Polymer Physics, 39, 1071-1084, (2001).
76. Schottner, G., "Hybrid sol-gel-derived polymers: Applications of multifunctional materials", Chemistry of Materials, 13, 3422-3435, (2001).
77. Sakka, S., "Sol-gel technology as reflected in journal of sol-gel science and technology", Journal of Sol-Gel Science and Technology, 26, 29-33, (2003).
78. Alpern, P., Lee, K.C., and Tilgner, R., "Effect of long and short Pb-free soldering profiles of IPC/JEDEC J-STD-020 on plastic SMD packages", Microelectronics Reliability, 44, 1293-1297, (2004).
79. Huang, C.J., Fu, S.Y., Zhang, Y.H., Lauke, B., Li, L.F., and Ye, L., "Cryogenic properties of SiO2/epoxy nanocomposites", Cryogenics, 45, 450-454, (2005).
80. Yan, S.F., Geng, J.X., Chen, J.F., Yin, L., Zhou, Y.C., Liu, L.J., and Zhou, E., "A study of NiZnCu-ferrite/SiO2 nanocomposites with different ferrite contents synthesized by sol-gel method", Journal of Magnetism and Magnetic Materials, 292, 304-309, (2005).
81. Kim, R.H., Kim, J.W., Park, K.S., and Bae, D.S., Fabrication and microstructure of ZnO-SiO2 nanoparticles by a reverse micelle and sol-gel processing, in Eco-Materials Processing & Design Vii. 2006. p. 790-793.
82. Ma, H.Z., Hu, J., and Zhang, Z.J., "Polyacrylate/silica nanocomposite materials prepared by sol-gel process", European Polymer Journal, 43, 4169-4177, (2007).
83. Garrido, L., Mark, J.E., Sun, C.C., Ackerman, J.L., and Chang, C., "NMR CHARACTERIZATION OF ELASTOMERS REINFORCED WITH INSITU PRECIPITATED SILICA", Macromolecules, 24, 4067-4072, (1991).
84. Wen, J.A. and Mark, J.E., "SYNTHESIS, STRUCTURE, AND PROPERTIES OF POLY(DIMETHYLSILOXANE) NETWORKS REINFORCED BY IN SITU-PRECIPITATED SILICA-TITANIA, SILICA-ZIRCONIA, AND SILICA-ALUMINA MIXED OXIDES", Journal of Applied Polymer Science, 58, 1135-1145, (1995).
85. Mark, J.E., "Ceriamic-Reinforced Polymers and Polymer-Modified Ceramics", POLYMER ENGINEERING AND SCIENCE, 36, 2905-2920, (1996).
86. Yuan, Q.W., Kloczkowski, A., Mark, J.E., and Sharaf, M.A., "Simulations on the reinforcement of poly(dimethylsiloxane) elastomers by randomly distributed filler particles", Journal of Polymer Science Part B-Polymer Physics, 34, 1647-1657, (1996).
87. Breiner, J.M. and Mark, J.E., "Preparation, structure, growth mechanisms and properties of siloxane composites containing silica, titania or mixed silica-titania phases", Polymer, 39, 5483-5493, (1998).
88. Yuan, Q.W. and Mark, J.E., "Reinforcement of poly(dimethylsiloxane) networks by blended and in-situ generated silica fillers having various sizes, size distributions, and modified surfaces", Macromolecular Chemistry and Physics, 200, 206-220, (1999).
89. Jeon, H.G., Mather, P.T., and Haddad, T.S., "Shape memory and nanostructure in poly(norbornyl-POSS) copolymers", Polymer International, 49, 453-457, (2000).
90. Bokobza, L., "Reinforcement of elastomeric networks by fillers", Macromolecular Symposia, 171, 163-170, (2001).
91. Xie, J.I., Zhang, N.Y., Guers, M., and Varadan, V.K., "Ultraviolet-curable polymers with chemically bonded carbon nanotubes for microelectromechanical system applications", Smart Materials & Structures, 11, 575-580, (2002).
92. Pan, G.R., Mark, J.E., and Schaefer, D.W., "Synthesis and characterization of fillers of controlled structure based on polyhedral oligomeric silsesquioxane cages and their use in reinforcing siloxane elastomers", Journal of Polymer Science Part B-Polymer Physics, 41, 3314-3323, (2003).
93. Rajan, G.S., Sur, G.S., Mark, J.E., Schaefer, D.W., and Beaucage, G., "Preparation and characterization of some unusually transparent poly(dimethylsiloxane) nanocomposites", Journal of Polymer Science Part B-Polymer Physics, 41, 1897-1901, (2003).
94. Murugesan, S., Sur, G.S., Mark, J.E., and Beaucage, G., "In-situ catalyst generation and controlled hydrolysis in the sol-gel precipitation of zirconia and titania particles in poly(dimethylsiloxane)", Journal of Inorganic and Organometallic Polymers, 14, 239-252, (2004).
95. Sheth, J.P., Aneja, A., Wilkes, G.L., Yilgor, E., Atilla, G.E., Yilgor, I., and Beyer, F.L., "Influence of system variables on the morphological and dynamic mechanical behavior of polydimethylsiloxane based segmented polyurethane and polyurea copolymers: a comparative perspective", Polymer, 45, 6919-6932, (2004).
96. Dewimille, L., Bresson, B., and Bokobza, L., "Synthesis, structure and morphology of poly (dimethylsiloxane) networks filled with in situ generated silica particles", Polymer, 46, 4135-4143, (2005).
97. Dlubek, G., De, U., Pionteck, J., Arutyunov, N.Y., Edelmann, M., and Krause-Rehberg, R., "Temperature dependence of free volume in pure and silica-filled poly(dimethyl siloxane) from positron lifetime and PVT experiments", Macromolecular Chemistry and Physics, 206, 827-840, (2005).
98. Liao, S.K., Jang, S.C., and Lin, M.F., "Phase behavior and mechanical properties of siloxane-urethane copolymer", Journal of Polymer Research, 12, 103-112, (2005).
99. Zhou, D.H., Subramaniam, S., and Mark, J.E., "In situ synthesis of polyaniline in poly(dimethylsiloxane) networks using an inverse emulsion route", Journal of Macromolecular Science-Pure and Applied Chemistry, A42, 113-126, (2005).
100. Balta-Calleja, F.J., Cagiao, M.E., Adhikari, R., and Michler, G.H., "Relating microhardness to morphology in styrene/butadiene block copolymer/polystyrene blends", Polymer, 45, 247-254, (2004).
101. McCormick, R.M., Nelson, R.J., AlonsoAmigo, M.G., Benvegnu, J., and Hooper, H.H., "Microchannel electrophoretic separations of DNA in injection-molded plastic substrates", Analytical Chemistry, 69, 2626-2630, (1997).
102. Despa, M.S., Kelly, K.W., and Collier, J.R., "Injection molding of polymeric LIGA HARMs", Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 6, 60-66, (1999).
103. Chen, R.H. and Lan, C.L., "Fabrication of high-aspect-ratio ceramic microstructures by injection molding with the altered lost mold technique", Journal of Microelectromechanical Systems, 10, 62-68, (2001).
104. Yao, D.G. and Kim, B., "Simulation of the filling process in micro channels for polymeric materials", Journal of Micromechanics and Microengineering, 12, 604-610, (2002).
105. Yao, D.G. and Kim, B., "Development of rapid heating and cooling systems for injection molding applications", Polymer Engineering and Science, 42, 2471-2481, (2002).
106. McFarland, A.W. and Colton, J.S., "Production and analysis of injection molded micro-optic components", Polymer Engineering and Science, 44, 564-579, (2004).
107. Xu, G.J., Yu, L.Y., Lee, L.J., and Koelling, K.W., "Experimental and numerical studies of injection molding with microfeatures", Polymer Engineering and Science, 45, 866-875, (2005).
108. Aurrekoetxea, J., Castillo, G., Cortes, F., Sarrionandia, M.A., and Urrutibeascoa, I., "Failure of multimaterial fusion bonding interface generated during over-injection molding/thermoforming hybrid process", Journal of Applied Polymer Science, 102, 261-265, (2006).
109. Martynova, L., Locascio, L.E., Gaitan, M., Kramer, G.W., Christensen, R.G., and MacCrehan, W.A., "Fabrication of plastic microfluid channels by imprinting methods", Analytical Chemistry, 69, 4783-4789, (1997).
110. Heckele, M., Bacher, W., and Muller, K.D., "Hot embossing - The molding technique for plastic microstructures", Microsystem Technologies, 4, 122-124, (1998).
111. Becker, H. and Heim, U., "Polymer hot embossing with silicon master structures", Sensors and Materials, 11, 297-304, (1999).
112. Gottschalch, F., Hoffmann, T., Torres, C.M.S., Schulz, H., and Scheer, H.C., "Polymer issues in nanoimprinting technique", Solid-State Electronics, 43, 1079-1083, (1999).
113. Jaszewski, R.W., Schift, H., Schnyder, B., Schneuwly, A., and Groning, P., "The deposition of anti-adhesive ultra-thin teflon-like films and their interaction with polymers during hot embossing", Applied Surface Science, 143, 301-308, (1999).
114. Locascio, L.E., Perso, C.E., and Lee, C.S., "Measurement of electroosmotic flow in plastic imprinted microfluid devices and the effect of protein adsorption on flow rate", Journal of Chromatography A, 857, 275-284, (1999).
115. Rode, M. and Hillerich, B., "Self-aligned positioning of microoptical components by precision prismatic grooves impressed into metals", Journal of Microelectromechanical Systems, 8, 58-64, (1999).
116. Becker, H. and Heim, U., "Hot embossing as a method for the fabrication of polymer high aspect ratio structures", Sensors and Actuators a-Physical, 83, 130-135, (2000).
117. Hirai, Y., Fujiwara, M., Okuno, T., Tanaka, Y., Endo, M., Irie, S., Nakagawa, K., and Sasago, M., "Study of the resist deformation in nanoimprint lithography", Journal of Vacuum Science & Technology B, 19, 2811-2815, (2001).
118. Juang, Y.J., Lee, L.J., and Koelling, K.W., "Hot embossing in microfabrication. Part II: Rheological characterization and process analysis", Polymer Engineering and Science, 42, 551-566, (2002).
119. Juang, Y.J., Lee, L.J., and Koelling, K.W., "Hot embossing in microfabrication. Part I: Experimental", Polymer Engineering and Science, 42, 539-550, (2002).
120. Qi, S.Z., Liu, X.Z., Ford, S., Barrows, J., Thomas, G., Kelly, K., McCandless, A., Lian, K., Goettert, J., and Soper, S.A., "Microfluidic devices fabricated in poly( methyl methacrylate) using hot-embossing with integrated sampling capillary and fiber optics for fluorescence detection", Lab on a Chip, 2, 88-95, (2002).
121. Chang, J.H. and Yang, S.Y., "Gas pressurized hot embossing for transcription of micro-features", Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 10, 76-80, (2003).
122. Zhao, Y.J. and Cui, T.H., "Fabrication of high-aspect-ratio polymer-based electrostatic comb drives using the hot embossing technique", Journal of Micromechanics and Microengineering, 13, 430-435, (2003).
123. Chang, J.H. and Yang, S.Y., "Development of fluid-based heating and pressing systems for micro hot embossing", Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 11, 396-403, (2005).
124. Koerner, T., Brown, L., Xie, R.X., and Oleschuk, R.D., "Epoxy resins as stamps for hot embossing of microstructures and microfluidic channels", Sensors and Actuators B-Chemical, 107, 632-639, (2005).
125. Belligundu, S. and Shialkolas, P.S., "Study on two-stage hot embossing microreplication: silicon to polymer to polymer", Journal of Microlithography Microfabrication and Microsystems, 5, (2006).
126. Cameron, N.S., Roberge, H., Veres, T., Jakeway, S.C., and Crabtree, H.J., "High fidelity, high yield production of microfluidic devices by hot embossing lithography: rheology and stiction", Lab on a Chip, 6, 936-941, (2006).
127. Hong, S.H., Yang, K., and Lee, H., Sub-100nm hybrid stamp fabrication by hot embossing, in Eco-Materials Processing & Design Vii. 2006. p. 462-465.
128. Mohamed, K., Alkaisi, M.M., and Smaill, J., "Resist deformation at low temperature in nanoimprint lithography", Current Applied Physics, 6, 486-490, (2006).
129. Sun, Y. and Kwok, Y.C., "Polymeric microfluidic system for DNA analysis", Analytica Chimica Acta, 556, 80-96, (2006).
130. Guo, Y.H., Liu, G., Zhu, X.L., and Tian, Y.C., "Analysis of the demolding forces during hot embossing", Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 13, 411-415, (2007).
131. Pan, L.W. and Lin, L.W., "Cylindrical plastic lens array fabricated by a micro intrusion process", IEEE, 217-221, (1999).
132. Heyderman, L.J., Schift, H., David, C., Gobrecht, J., and Schweizer, T., "Flow behaviour of thin polymer films used for hot embossing lithography", Microelectronic Engineering, 54, 229-245, (2000).
133. Xia, Y.N. and Whitesides, G.M., "Soft lithography", Annual Review of Materials Science, 28, 153-184, (1998).
134. Chiang, Y.M., "Characterizing the process of cast molding microfluidic systems", SPIE, 3877, 303-311, (1999).
135. Bender, M., Otto, M., Hadam, B., Vratzov, B., Spangenberg, B., and Kurz, H., "Fabrication of Nanostructures using a UV-based imprint technique", Microelectronic Engineering, 53, 233-236, (2000).
136. Otto, M., Bender, M., Hadam, B., Spangenberg, B., and Kurz, H., "Characterization and application of a UV-based imprint technique", Microelectronic Engineering, 57-8, 361-366, (2001).
137. Deng, T., Prentiss, M., and Whitesides, G.M., "Fabrication of magnetic microfiltration systems using soft lithography", Applied Physics Letters, 80, 461-463, (2002).
138. Kim, K., Park, S., Lee, J.B., Manohara, H., Desta, Y., Murphy, M., and Ahn, C.H., "Rapid replication of polymeric and metallic high aspect ratio microstructures using PDMS and LIGA technology", Microsystem Technologies, 9, 5-10, (2002).
139. Chan-Park, M.B. and Neo, W.K., "Ultraviolet embossing for patterning high aspect ratio polymeric microstructures", Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 9, 501-506, (2003).
140. Chan-Park, M.B., Yan, Y.H., Neo, W.K., Zhou, W.X., Zhang, J., and Yue, C.Y., "Fabrication of high aspect ratio poly(ethylene glycol)-containing microstructures by UV embossing", Langmuir, 19, 4371-4380, (2003).
141. Gao, J.X., Chan-Park, M.B., Xie, D.Z., Yan, Y.H., Zhou, W.X., Ngoi, B.K.A., and Yue, C.Y., "UV embossing of sub-micrometer patterns on biocompatible polymeric films using a focused ion beam fabricated TiN mold", Chemistry of Materials, 16, 956-958, (2004).
142. Yan, Y.H., Chan-Park, M.B., Gao, J.X., and Yue, C.Y., "Electroless nickel-plated UV-embossed microstructured surface with very high aspect ratio channels", Langmuir, 20, 1031-1035, (2004).
143. Schmitz, G.J., Brucker, C., and Jacobs, P., "Manufacture of high-aspect-ratio micro-hair sensor arrays", Journal of Micromechanics and Microengineering, 15, 1904-1910, (2005).
144. Zhou, W.X. and Chan-Park, M.B., "Large area UV casting using diverse polyacrylates of microchannels separated by high aspect ratio microwalls", Lab on a Chip, 5, 512-518, (2005).
145. Yeo, L.P., Yan, Y.H., Lam, Y.C., and Chan-Park, M.B., "Design of experiment for optimization of plasma-polymerized octafluorocyclobutane coating on very high aspect ratio silicon molds", Langmuir, 22, 10196-10203, (2006).
146. Zhang, Y., Lo, C.W., Taylor, J.A., and Yang, S., "Replica molding of high-aspect-ratio polymeric nanopillar arrays with high fidelity", Langmuir, 22, 8595-8601, (2006).
147. 黃靖婷, "探討製作預填分離膠質之DNA分析晶片", 國立成功大學化工所碩士論文, (2007).
148. Lee, J.N., Park, C., and Whitesides, G.M., "Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices", Analytical Chemistry, 75, 6544-6554, (2003).
149. Nagao, D., Mine, E., Kobayashi, Y., and Konno, M., "Synthesis of silica particles in the hydrolysis of tetraethyl orthosilicate with amine catalysts", Journal of Chemical Engineering of Japan, 37, 905-907, (2004).
150. Narasimhan, J. and Papautsky, I., "Polymer embossing tools for rapid prototyping of plastic microfluidic devices", Journal of Micromechanics and Microengineering, 14, 96-103, (2004).