簡易檢索 / 詳目顯示

研究生: 任紀光
Ren, Chi-Guang
論文名稱: 熔池溫度場即時量測技術於不鏽鋼316L粉末用於選擇性雷射熔融製程
Measurement on Melting Pool Temperature during Selective Laser Melting Process with Stainless Steel 316L Powder
指導教授: 陳元方
Chen, Yuan-Fang
羅裕龍
Lo, Yu-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 76
中文關鍵詞: 選擇性雷射熔融雙色高溫計放射率同軸溫度監控系統不鏽鋼316L粉末
外文關鍵詞: Selective laser melting (SLM), Two color pyrometer, Emissivity, Coaxial temperature monitoring system, Stainless steel 316L powder
相關次數: 點閱:111下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出一種尋找熔池放射率比值的方法以及應用於雙色高溫計中以達到即時量測熔池之溫度場,利用推導出之運算式與熱傳模擬之結果,再將模擬結果之表面截點溫度值截取出,並根據所提出的後處理方法得到高溫計之預讀溫度,最後根據實驗找到在雙色高溫計兩波段之放射率,並形成比值。根據此比值設定於高溫計之比值模式,經實驗量測後與計算之預讀溫度相符合,並且經過兩個不同雷射功率之實驗驗證,得到相互匹配的結果。在此實驗中,有以下因素會影響材料之放射率,如金屬粉層厚度、金屬粉末粒徑大小分布、金屬粉末種類以及高溫計的測溫視場大小等。此外,若為同一批金屬粉末,只要粉層厚度改變,放射率則需要根據提出之流程方法重新求得。

    This research develops a technique to estimate the emissivity ratio of a two color pyrometer in measuring the melting pool of stainless steel 316L powder during selective laser melting process. The goal is to achieve the real-time temperature measurement, which is based on a proposed model and the result of heat transfer simulation, then extract the temperature of those nodes on surface in simulation to do the post processing which was developed in this research, then could obtain the computed temperature for pyrometer. Finally, basing upon the computed temperature could find out the emissivity values at each wavelength in pyrometer experiment, and forms them into an emissivity ratio. It is found out that the two experimental results based on the emissivity ratio correspond to the computed temperature. In experiment, there are several factors that affect emissivity values such as the layer thickness of metal powder, the size distribution of metal powder, the kind of metal powder and the measuring spot size of pyrometer. Besides, if the metal powder is in the same group, the powder layer thickness changes, the additional experiments for finding the emissivity ratio will have to do.

    CONTENTS ABSTRACT I 中文摘要 III 致謝 IV CONTENTS V LIST OF FIGURES VIII LIST OF TABLES XII Chapter 1 Introduction 1 1.1 Preface 1 1.2 Review of Pyrometer 4 1.3 Review of Heat Source in Simulation of SLM 6 1.3.1 Volumetric Heat Source 6 1.4 Research Motivation and Purposes 9 1.5 Thesis Overview 11 Chapter 2 Simulation Heat Source and Heat Transfer Theory 12 2.1 Heat Source 12 2.2 Material Properties of Stainless Steel 316L Powder 15 2.2.1 Thermal Conductivity 15 2.2.2 Density and Capacity 20 2.3 Thermal Equations and Conditions 21 Chapter 3 Procedure for Finding Emissivities of Ratio Pyrometer (Two Color Pyrometer) 22 3.1 Measuring System of Pyrometer 22 3.1.1 Target 22 3.1.2 Emissivity 23 3.1.3 Detectors 25 3.2 Theory of Two Color Pyrometer and Comparison 27 3.2.1 One Color Mode 27 3.2.2 Two Color Mode 29 3.3 Strategy in Measurements 33 3.3.1 A Solution to Achieve Real-Time Measurement by Pyrometer 33 3.3.2 Spot Size Modification with an Incident Angle 37 Chapter 4 Experimental and Simulation Results 40 4.1 Experimental Results in Thermocouple 40 4.1.1 Simulation Model for Verifying Thermocouple Experiment 47 4.1.2 Simulation Results for Thermocouple experiment 50 4.1.3 Result and Discuss 52 4.2 Experiment Results for Emissivity Estimation by Pyrometer 53 4.2.1 The First Simulation Model for Temperature Computation of Pyrometer 63 4.2.2 The First Simulation Results for Temperature Computation of Pyrometer 66 4.2.3 The Second Simulation Model for Verification of Emissivity Ratio 68 4.2.4 The Second Simulation Result for Emissivity Ratio Verification 69 4.2.5 Result and Discuss 72 Chapter 5 Conclusion and Future Work 73 5.1 Conclusion 73 5.2 Future Work 73 Reference 75

    [1] M. Mani, S. Feng, B. Lane, A. Donmez, S. Moylan, and R. Fesperman, Measurement science needs for real-time control of additive manufacturing powder bed fusion processes: US Department of Commerce, National Institute of Standards and Technology, 2015.
    [2] M. Pavlov, M. Doubenskaia, and I. Smurov, "Pyrometric analysis of thermal processes in SLM technology," Physics Procedia, vol. 5, pp. 523-531, 2010.
    [3] K.-D. Gruner. (2003 ). Principles of Non-Contact Temperature Measurement, Retrieved from http://support.fluke.com/raytek-sales/Download/Asset/IR_THEORY_55514_ENG_REVB_LR.PDF.
    [4] W. L. Wolfe and G. J. Zissis, "The infrared handbook," Arlington: Office of Naval Research, Department of the Navy, 1978, edited by Wolfe, William L.; Zissis, George J., 1978.
    [5] I. I. GmbH. (2004). Pyrometer-Handbook, Retrieved from http://www.impacinfrared.com.
    [6] M. Doubenskaia, S. Grigoriev, I. Zhirnov, and I. Smurov, "Parametric analysis of SLM using comprehensive optical monitoring," Rapid Prototyping Journal, vol. 22, pp. 40-50, 2016.
    [7] V. P. Veiko, F. Bayle, and M. Doubenskaia, "Selective laser melting process monitoring with high speed infra-red camera and pyrometer," pp. 698505-698505-8, 2008.
    [8] H.-C. Tran and Y.-L. Lo, "A Heat Transfer Simulation with New Volumetric Heat source in Selective Laser Melting," Journals of Material Processing Technology 2017.
    [9] P. Fischer, V. Romano, H. P. Weber, N. P. Karapatis, E. Boillat, and R. Glardon, "Sintering of commercially pure titanium powder with a Nd:YAG laser source," Acta Materialia, vol. 51, pp. 1651-1662, 2003.
    [10] A. V. Gusarov and E. P. Kovalev, "Model of thermal conductivity in powder beds," Physical Review B, vol. 80, 2009.
    [11] A. V. Gusarov, I. Yadroitsev, P. Bertrand, and I. Smurov, "Model of Radiation and Heat Transfer in Laser-Powder Interaction Zone at Selective Laser Melting," Journal of Heat Transfer, vol. 131, p. 072101, 2009.
    [12] A. Hussein, L. Hao, C. Yan, and R. Everson, "Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting," Materials & Design, vol. 52, pp. 638-647, 2013.
    [13] A. Foroozmehr, M. Badrossamay, E. Foroozmehr, and S. i. Golabi, "Finite Element Simulation of Selective Laser Melting process considering Optical Penetration Depth of laser in powder bed," Materials & Design, vol. 89, pp. 255-263, 2016.
    [14] W. van Antwerpen, C. G. du Toit, and P. G. Rousseau, "A review of correlations to model the packing structure and effective thermal conductivity in packed beds of mono-sized spherical particles," Nuclear Engineering and Design, vol. 240, pp. 1803-1818, 2010.
    [15] A. Gusarov, T. Laoui, L. Froyen, and V. Titov, "Contact thermal conductivity of a powder bed in selective laser sintering," International Journal of Heat and Mass Transfer, vol. 46, pp. 1103-1109, 2003.
    [16] M. Rombouts, L. Froyen, A. V. Gusarov, E. H. Bentefour, and C. Glorieux, "Photopyroelectric measurement of thermal conductivity of metallic powders," Journal of Applied Physics, vol. 97, p. 024905, 2005.
    [17] J. Schieferdecker, "Infrarot-Strahlungssensoren zur berührungslosen Temperaturmessung," in Sensortechnik, ed: Springer, 2014, pp. 929-1003.
    [18] F. Bernhard, "Spektroskopische Temperaturmessung," in Technische Temperaturmessung, ed: Springer, 2004, pp. 1201-1227.
    [19] D. P. DeWitt and G. D. Nutter, Theory and practice of radiation thermometry: John Wiley & Sons, 1988.
    [20] T. Furumoto, T. Ueda, M. R. Alkahari, and A. Hosokawa, "Investigation of laser consolidation process for metal powder by two-color pyrometer and high-speed video camera," CIRP Annals - Manufacturing Technology, vol. 62, pp. 223-226, 2013.

    下載圖示 校內:2022-08-30公開
    校外:2022-08-31公開
    QR CODE