簡易檢索 / 詳目顯示

研究生: 洪裕涵
Hung, Yu-Han
論文名稱: 以光注入半導體雷射週期一非線性動態進行應用於光載微波系統之全光訊號處理
Nonlinear period-one dynamics of optically injected semiconductor lasers for optical signal processing in radio-over-fiber links
指導教授: 黃勝廣
Hwang, Sheng-Kwang
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 77
中文關鍵詞: 半導體雷射週期一非線性動態光載微波通訊系統全光訊號處理光電微波訊號產生器光電微波訊號混頻器光電微波放大器雙邊帶調制訊號到單邊帶調制訊號轉換器
外文關鍵詞: Semiconductor lasers, Nonlinear period-one dynamics, Radio-over-fiber links, Optical signal processing, Photonic microwave generation, Photonic microwave mixing, Photonic microwave amplification, Optical double-sideband to optical single-sideband conversion
相關次數: 點閱:269下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是研究光注入半導體雷射週期一非線性動態之物理特性,並利用其特性進行光載微波通訊系統中全光訊號處理之應用。週期一非線性動態係光注入半導體雷射非線性動態中的一種,其光譜具有微波震盪之特性,研究指出其微波震盪頻率可調且可調範圍寬廣,可由數十GHz至數百GHz。此外,週期一非線性動態也具有極佳之光波調制深度以及單邊帶調制等特性。本論文乃利用週期一非線性動態所具有之特性進行光載微波通訊系統中全光訊號處理之研究。本研究成功利用週期一非線性動態的微波震盪特性完成高品質光電微波訊號產生器,以及光電微波訊號混頻器,其微波頻率可以光電方式調整,相較於傳統的電子方式,本方法可大幅降低系統建置與維修成本。本研究也利用週期一非線性動態所具有的極佳光波調制深度完成一光電微波放大器,由於此放大率可達20dB以上,可大幅提昇通訊系統的通訊品質以及使用範圍。利用週期一非線性動態之單邊帶調制的特性,我們發展出從雙邊帶調制訊號到單邊帶調制訊號的轉換器,此可改善雙邊帶調制訊號在光纖傳輸中所面臨的微波功率消散(microwave power fading)之問題。

    Nonlinear period-one dynamics of semiconductor lasers are investigated in this dissertation for optical signal processing in radio-over-fiber links. When a semiconductor laser is subject to an optical injection, and is operated in period-one dynamics, the period-one dynamics exhibit one strong resonant sideband lower than regeneration of an injection in frequency, but approximately equal in intensity through anti-guidance effect. The period-one dynamics possess distinct optical features including self-sustained microwave oscillation, deep optical modulation depth and optical single-sideband spectrum. By applying these optical features of period-one dynamics, four different signal processing functionalities are proposed and demonstrated in this dissertation. A high quality photonic microwave generation and photonic microwave mixing using the feature of self-sustained microwave oscillation are demonstrated. Photonic microwave amplification adopting the feature of deep optical modulation depth of period-one dynamics is achieved. An effect of microwave power fading in radio-over-fiber links is studied and eliminated using the period-one dynamics possessing an optical single-sideband spectrum.

    摘要iii Abstract iv Acknowledgements v Table of Contents / 目錄 vi List of Figures / 圖片 viii Chapter 1.Introduction 1 1.1 Motivation .............1 1.2 Backgroung .............2 1.3 Dissertation Outline ..........3 Chapter 2.High-purity photonic microwave generation using period-one dynamics of semiconductor lasers 4 2.1 Introduction .............4 2.2 Experimental Setup ...........6 2.3 Period-one dynamics ..........7 2.4 Period-one dynamics stabilization .........10 2.5 Conclusion .............17 Chapter 3.Photonic microwave mixing using period-one dynamics of semiconductor lasers 18 3.1 Introduction .............18 3.2 Double-locked semiconductor lasers ........20 3.2.1 Experimental setup ..........20 3.2.2 Demonstration and result ........21 3.2.3 Conclusion ............27 3.3 Optical feedback ............29 3.3.1 Experimental setup ..........29 3.3.2 Demonstration result .........32 3.3.3 Conclusion ............33 Chapter 4.Photonic microwave amplification using period-one dynamics of semiconductor lasers 35 4.1 Introduction .............35 4.2 Experimental Setup ...........36 4.3 Investigation of period-one dynamics .......38 4.4 RF amplification ............40 4.4.1 Concept demonstration .........40 4.4.2 System performance of photonic microwave amplification ...42 4.4.3 Tunability of photonic microwave amplification ....42 4.4.4 Adaptability of photonic microwave amplification .....44 4.4.5 Stability of photonic microwave amplification .....47 4.5 Conclusion .............51 Chapter 5.Optical double-sideband modulation to optical single-sideband modulation conversion using period-one dynamics of semiconductor lasers 52 5.1 Introduction .............52 5.2 Experimental Setup ...........55 5.3 Optical DSB-to-SSB conversion technique using period-one dynamics ..55 5.3.1 Investigation of period-one dynamics ......55 5.3.2 Experimental demonstration of optical DSB-to-SSB conversion ..57 5.4 SSB signal transmission over fiber links ........62 5.5 Conclusion .............65 Chapter 6.Conclusion 66 6.1 Summary ............66 6.2 Future work .............67 References 69

    [1] C. Lim, A. Nirmalathas, and D. Novak, “Techniques for multichannel data transmission
    using a multisection laser in millimeter-wave fiber-radio systems,” IEEE Trans.
    Microwave Theory Tech., vol. 40, no. 7, pp. 1351–1357, 1999.
    [2] A. Ng’oma, D. Fortusini, D. Parekh, W. J. Yang, M. Sauer, S. Benjaminh, W. Hofmann,
    M. C. Amann, and C. J. Chang-Hasnain, “Performance of a multi-Gb/s 60 GHz radio
    over fiber system employing a directly modulated optically injection-locked VCSEL,”
    J. Lightwave Technol., vol. 28, no. 16, pp. 2436–2444, 2010.
    [3] C. C. Cui and S. C. Chan, “Performance analysis on using period-one oscillation of
    optically injected semiconductor lasers for radio-over-fiber uplinks,” IEEE J. Quantum
    Electron., vol. 48, no. 4, pp. 490–499, 2012.
    [4] M. Zhu, L. Zhang, S. H. Fan, C. Su, G. Gu, and G. K. Chang, “Efficient delivery of integrated
    wired and wireless services in UDWDM-RoF-PON coherent access network,”
    IEEE Photon. Technol. Lett., vol. 24, no. 13, pp. 1127–1129, 2012.
    [5] B. Zhu, S. Pan, D. Zhu, and J. Yao, “Wavelength reuse in a bidirectional radio-over-fiber
    link based on cross-gain and cross-polarization modulation in a semiconductor optical
    amplifier,” Opt. Lett., vol. 38, no. 18, pp. 3496–3498, 2013.
    [6] C. Cox, E. Ackerman, R. Helkey, and G. E. Betts, “Techniques and performance of
    intensity-modulation direct-detection analog optical links,” IEEE Trans. Microwave
    Theory Tech., vol. 45, no. 8, pp. 1375–1383, 1997.
    [7] J. R. Tredicce, F. T. Arecchi, G. L. Lippi, and G. P. Puccionis, “Instabilities in lasers
    with an injected signal,” J. Opt. Soc. Amer. B, vol. 2, no. 1, pp. 173–183, 1985.
    [8] J. R. Tredicce, N. B. Abraham, G. P. Puccioni, and F. T. Arecchi, “On chaos in lasers
    with modulated parameters: a comparative analysis,” Opt. Commun., vol. 55, no. 2,
    pp. 131–134, 1985.
    [9] B. A. Huberman and J. P. Crutchfield, “Chaotic states of anharmonic systems in periodic
    fields,” Phys. Rev. Lett., vol. 43, no. 23, pp. 1743–1747, 1979.
    69
    [10] T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by
    external optical injection in semiconductor lasers,” Quantum Semiclass. Opt., vol. 9,
    no. 5, pp. 765–784, 1997.
    [11] S. K. Hwang and J. M. Liu, “Dynamical characteristics of an optically injected semiconductor
    laser,” Opt. Commun., vol. 183, no. 1-4, pp. 195–205, 2000.
    [12] T. B. Simpson, “Mapping the nonlinear dynamics of a distributed feedback semiconductor
    laser subject to external optical injection,” Opt. Commun., vol. 215, no. 1-3,
    pp. 135–151, 2003.
    [13] R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection
    laser properties,” IEEE J. Quantum Electron., vol. 16, no. 3, pp. 347–355, 1980.
    [14] K. Otsuka and J. L. Chern, “High-speed picosecond pulse generation in semiconductor
    lasers withincoherent optical feedback,” Opt. Lett., vol. 16, no. 22, pp. 1759–1761,
    1991.
    [15] G. H. M. van Tartwijk and D. Lenstra, “Semiconductor lasers with optical injection and
    feedback,” Quantum Semiclass. Opt., vol. 7, no. 4, pp. 87–143, 1995.
    [16] S. Tang and J. M. Liu, “Chaotic pulsing and quasi-periodic route to chaos in a semiconductor
    laser with delayed opto-electronic feedbac,” IEEE J. Quantum Electron., vol. 37,
    no. 3, pp. 329–336, 2001.
    [17] F. Y. Lin and J. M. Liu, “Nonlinear dynamics of a semiconductor laser with delayed
    negative optoelectronic feedback,” IEEE J. Quantum Electron., vol. 39, no. 4, pp. 562–
    568, 2003.
    [18] G. Q. Xia, S. C. Chan, and J. M. Liu, “Multistability in a semiconductor laser with
    optoelectronic feedback,” Opt. Express, vol. 15, no. 2, pp. 572–576, 2007.
    [19] G. Kozyreff, A. G. Vladimirov, and P. Mandel, “Global coupling with time delay in an
    array of semiconductor lasers,” Phys. Rev. Lett., vol. 85, no. 18, pp. 3809–3812, 2000.
    [20] R. Vicente, S. Tang, J. Mulet, C. R. Mirasso, , and J. M. Liu, “Synchronization properties
    of two self-oscillating semiconductor lasers subject to delayed optoelectronic mutual
    coupling,” Physical Review E, vol. 73, no. 4, p. 047201, 2006.
    70
    [21] S. Donati and S. K. Hwang, “Chaos and high-level dynamics in coupled lasers and their
    applications,” Prog. Quantum Electron., vol. 36, no. 2-3, pp. 293–341, 2012.
    [22] T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband
    noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett.,
    vol. 7, no. 7, pp. 709–711, 1995.
    [23] T. B. Simpson, J. M. Liu, and A. Gavrielides, “Small-signal analysis of modulation
    characteristics in a semiconductor laser subject to strong optical injection,” IEEE J.
    Quantum Electron., vol. 32, no. 8, pp. 1456–1468, 1996.
    [24] T. B. Simpson and J. M. Liu, “Enhanced modulation bandwidth in injection-locked
    semiconductor lasers,” IEEE Photon. Technol. Lett., vol. 9, no. 10, pp. 1322–1324,
    1997.
    [25] J. M. Liu, H. F. Chen, X. J. Meng, and T. B. Simpson, “Modulation bandwidth, noise,
    and stability of a semiconductor laser subject to strong injection locking,” IEEE Photon.
    Technol. Lett., vol. 9, no. 10, pp. 1325–1327, 1997.
    [26] Y. Okajima, S. K. Hwang, and J. M. Liu, “Experimental observation of chirp reduction
    in bandwidth-enhanced semiconductor lasers subject to strong optical injection,” Opt.
    Commun., vol. 219, no. 1-6, pp. 357–364, 2003.
    [27] S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz intrinsic bandwidth for direct modulation
    in 1.3-um semiconductor lasers subject to strong injection locking,” IEEE Photon.
    Technol. Lett., vol. 16, no. 4, pp. 972–974, 2004.
    [28] S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in
    semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron.,
    vol. 10, no. 5, pp. 974–981, 2004.
    [29] S. C. Chan and J. M. Liu, “Microwave frequency division and multiplication using
    an optically injected semiconductor laser,” IEEE J. Quantum Electron., vol. 41, no. 9,
    pp. 1142–1147, 2005.
    [30] S. K. Hwang and D. H. Liang, “Effects of linewidth enhancement factor on periodone
    oscillations of optically injected semiconductor lasers,” Appl. Phys. Lett., vol. 89,
    pp. 061120–1, 2006.
    71
    [31] S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave
    transmission using an optically injected semiconductor laser,” Opt. Express, vol. 15,
    no. 22, pp. 14921–14935, 2007.
    [32] A. Hurtado, J. Mee, M. Nami, I. D. Henning, M. J. Adams, and L. F. Lester, “Tunable
    microwave signal generator with an optically-injected 1310nm QD-DFB laser,” Opt.
    Express, vol. 21, no. 9, pp. 10772–10778, 2013.
    [33] V. Kovanis, A. Gavrielides, T. B. Simpson, and J. M. Liu, “Instabilities and chaos in optically
    injected semiconductor lasers,” Appl. Phys. Lett., vol. 67, pp. 2780–2782, 1995.
    [34] T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Perioddoubling
    cascades and chaos in a semiconductor laser with optical injection,” Phys. Rev. A,
    vol. 51, no. 5, pp. 4181–4185, 1995.
    [35] F. Y. Lin and J. M. Liu, “Diverse waveform generation using semiconductor lasers for
    radar and microwave applications,” IEEE J. Quantum Electron., vol. 40, no. 6, pp. 682–
    689, 2004.
    [36] W. T. Wu, Y. H. Liao, and F. Y. Lin, “Noise suppressions in synchronized chaos lidars,”
    Opt. Express, vol. 18, no. 25, pp. 26155–26162, 2010.
    [37] C. H. Cheng, Y. C. Chen, and F. Y. Lin, “Chaos time delay signature suppression
    and bandwidth enhancement by electrical heterodyning,” Opt. Express, vol. 23, no. 3,
    pp. 2308–2319, 2013.
    [38] O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. Stalnacke, and L. Backbom, “30
    GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55um
    wavelength,” Electron. Lett., vol. 33, no. 6, pp. 488–489, 1997.
    [39] Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, “30 GHz bandwidth
    1.55um strain-compensated InGaAlAs-InGaAsP MQW laser,” IEEE J. Quantum Electron.,
    vol. 9, no. 1, pp. 25 – 27, 1997.
    [40] K. Sato, “Semiconductor light sources for 40-Gb/s transmission systems,” J. Lightwave
    Technol., vol. 20, no. 12, pp. 2035 – 2043, 2002.
    [41] R. G. Walker, “High-speed III-V semiconductor intensity modulators,” IEEE J. Quantum
    Electron., vol. 27, no. 3, pp. 654 – 6677, 1991.
    72
    [42] J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very
    narrow linewidth millimetre wave signals,” Electron. Lett., vol. 28, no. 25, pp. 2309–
    2311, 1992.
    [43] T. Ido, S. Tanaka, M. Suzuki, M. Koizumi, H. Sano, and H. Inoue, “Ultra-high-speed
    multiple-quantum-well electro-absorption optical modulators with integrated waveguides,”
    J. Lightwave Technol., vol. 14, no. 9, pp. 2026–2034, 1996.
    [44] U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjzr, S. Lindgren,
    and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of
    3-18 GHz microwave carriers,” IEEE Photon. Technol. Lett., vol. 4, no. 8, pp. 936–938,
    1992.
    [45] Z. F. Fan and M. Dagenais, “Optical generation of a mhz-linewidth microwave signal
    using semiconductor lasers and a discriminator-aided phase-locked loop,” IEEE Trans.
    Microwave Theory Tech., vol. 45, no. 8, pp. 1296–1300, 1997.
    [46] L. N. Langley, M. D. Elkin, C. Edge, M. J. Wale, U. Gliese, X. Huang, and A. J. Seeds,
    “Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation,
    processing and transmission of microwave signals,” IEEE Trans. Microwave
    Theory Tech., vol. 47, no. 7, pp. 1257–1264, 1999.
    [47] Y. Ji, X. S. Yao, and L. Maleki, “Compact optoelectronic oscillator with ultra-low phase
    noise performance,” Electron. Lett., vol. 35, no. 18, pp. 1554 – 1555, 1999.
    [48] X. S. Yao, L. Davis, and L. Maleki, “Coupled optoelectronic oscillators for generating
    both RF signal and optical pulses,” J. Lightwave Technol., vol. 18, no. 1, pp. 73 – 78,
    2000.
    [49] Y. Jiang, G. Bai, L. Hu, H. Li, Z. Zhou, J. Xu, and S. Wang, “Frequency locked singlemode
    optoelectronic oscillator by using low frequency RF signal injection,” IEEE Photon.
    Technol. Lett., vol. 25, no. 4, pp. 382 – 384, 2013.
    [50] M. G. Thompson, A. R. Rae, M. Xia, R. V. Penty, and I. H. White, “InGaAs Quantum-
    Dot Mode-Locked laser diodes,” IEEE J. Sel. Top. Quantum Electron., vol. 15, no. 3,
    pp. 661– 672, 2009.
    73
    [51] J. Schröder, T. D. Vo, , and B. J. Eggleton, “Repetition-rate-selective, wavelengthtunable
    mode-locked laser at up to 640 GHz,” Opt. Lett., vol. 34, no. 24, pp. 3902–3904,
    2009.
    [52] K. G. Wilcox, A. H, Quarterman, H. E. Beere, D. A. Ritchie, and A. C. Tropper,
    “Repetition-frequency-tunable mode-locked surface emitting semiconductor laser between
    2.78 and 7.87 GHz,” Opt. Express, vol. 19, no. 23, pp. 23453–23459, 2011.
    [53] D. Wake, C. R. Lima, and P. A. Davies, “Optical generation of millimeter- wave signals
    for fiber-radio systems using a dual-mode DFB semiconductor laser,” IEEE Trans.
    Microwave Theory Tech., vol. 43, no. 9, pp. 2270–2276, 1995.
    [54] C. Lima, D. Wake, and P. Davies, “Compact optical millimetre-wave source using a
    dual-mode semiconductor laser,” Electron. Lett., vol. 31, no. 5, pp. 364 – 365, 1995.
    [55] X. Chen, Z. Deng, and J. Yao, “Photonic generation of microwave signal using a dualwavelength
    single-longitudinal-mode fiber ring laser,” IEEE Trans. Microwave Theory
    Tech., vol. 54, no. 2, pp. 804–809, 2006.
    [56] T. B. Simpson and F. Doft, “Double-locked laser diode for microwave photonics applications,”
    IEEE Photon. Technol. Lett., vol. 11, no. 11, pp. 1476–1478, 1999.
    [57] S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation
    using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron., vol. 10,
    no. 5, p. 1025–1032, 2004.
    [58] J. P. Zhuang and S. C. Chan, “Tunable photonic microwave generation using optically
    injected semiconductor laser dynamics with optical feedback stabilization,” Opt. Lett.,
    vol. 38, no. 3, p. 344–346, 2013.
    [59] T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth
    sharpening via polarizationrotated feedback in optically-injected semiconductor laser
    oscillators,” IEEE J. Sel. Top. Quantum Electron., vol. 19, no. 4, p. 1500807, 2013.
    [60] K. H. Lo, S. K. Hwang, and S. Donati, “Optical feedback stabilization of photonic
    microwave generation using period-one nonlinear dynamics of semiconductor lasers,”
    Opt. Express, vol. 22, no. 15, p. 18648–18661, 2014.
    74
    [61] I. Aldaya, J. Beas, G. Castanon, G. Campuzano, and A. Aragon-Zavala, “A survey of
    key-enabling components for remote millimetric wave generation in radio over fiber
    networks,” Opt. Laser Technol., vol. 49, p. Opt. Laser Technol., 2013.
    [62] F. van Dijk, A. Enard, X. Buet, F. Lelarge, and G. Duan, “Phase noise reduction of a
    quantum dash mode-locked laser in a millimeter-wave coupled optoelectronic oscillator,”
    J. Lightwave Technol., vol. 26, no. 15, pp. 2789–2794, 2008.
    [63] G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency
    signal-generation system with over seven octaves of continuous tuning,” Nature
    Photon., vol. 7, p. 118–122, 2013.
    [64] M. J. W. Rodwell, D. M. Bloom, and K. J. Weingarten, “Subpicosecond laser timing
    stabilization,” IEEE J. Quantum Electron., vol. 25, no. 4, p. 817–827, 1989.
    [65] S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber am-to-fm upconversion
    using an optically injected semiconductor laser,” Opt. Lett., vol. 31, no. 15, p. 2254–
    2256, 2006.
    [66] G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, “Microwave optical mixing in
    LiNbO3 modulators,” IEEE Trans. Microwave Theory Tech., vol. 41, no. 12, pp. 2383–
    2391, 1993.
    [67] C. K. Sun, R. J. Orazi, and S. A. Pappert, “Efficient microwave frequency conversion
    using photonic link signal mixing,” IEEE Photon. Technol. Lett., vol. 8, no. 1, pp. 154–
    156, 1996.
    [68] R. Helkey, J. C. Twichell, and C. Cox, “A down-conversion optical link with RF gain,”
    J. Lightwave Technol., vol. 15, no. 6, pp. 956–961, 1997.
    [69] H. J. Song and J. I. Song, “Simultaneous all-optical frequency downconversion technique
    utilizing an SOA-MZI for WDM radio over fiber (RoF) applications,” J. Lightwave
    Technol., vol. 24, no. 8, pp. 3028–3034, 2006.
    [70] V. R. Pagan, B. M. Haas, and T. E. Murphy2, “Linearized electrooptic microwave downconversion
    using phase modulation and optical filtering,” Opt. Express, vol. 19, no. 2,
    pp. 883–895, 2011.
    75
    [71] C. Bohemond, T. Rampone, and A. Sharaiha, “Performances of a photonic microwave
    mixer based on cross-gain modulation in a semiconductor optical amplifier,” J. Lightwave
    Technol., vol. 29, no. 16, pp. 2402–2409, 2011.
    [72] E. H. W. Chan and R. A. Minasian, “Microwave photonic downconverter with high
    conversion efficiency,” J. Lightwave Technol., vol. 30, no. 23, pp. 3580–3585, 2012.
    [73] E. H. W. Chan and R. A. Minasian, “High conversion efficiency microwave photonic
    mixer based on stimulated brillouin scattering carrier suppression technique,” Opt. Lett.,
    vol. 38, no. 24, pp. 5292–5295, 2011.
    [74] M. J. LaGasse, W. Charczenko, M. C. Hamilton, and S. Thaniyavarn, “Optical carrier
    filtering for high dynamic range fibre optic links,” Electron. Lett., vol. 30, no. 25,
    pp. 2157–2158, 1994.
    [75] R. D. Esman and K. J. Williams, “Wideband efficiency improvement of fiber optic
    systems by carrier subtraction,” IEEE Photon. Technol. Lett., vol. 7, no. 2, pp. 218–
    220, 1995.
    [76] S. Xiao and A. M. Weiner, “Optical carrier-suppressed single sideband (O-CS-SSB)
    modulation using a hyperfine blocking filter based on a virtually imaged phased-array
    (VIPA),” IEEE Photon. Technol. Lett., vol. 17, no. 7, pp. 1522–1524, 2005.
    [77] D. S. Glassner, M. Y. Frankel, and R. D. Esman, “Reduced loss microwave fiberoptic
    links by intracavity modulation and carrier suppression,” IEEE Microwave Guided
    Wave Lett., vol. 7, no. 3, pp. 57–59, 1997.
    [78] C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of
    optical carrier-to-sideband ratio for improving transmission performance in fiber-radio
    links,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 5, pp. 2181–2187, 2006.
    [79] K. J. Williams and R. D. Esman, “Stimulated brillouin scattering for improvement of
    microwave fibre-optic link efficiency,” Electron. Lett., vol. 30, no. 23, pp. 1965–1966,
    1994.
    [80] S. Tonda-Goldstein, D. Dolfi, J. P. Huignard, G. Charlet, and J. Chazelas, “Stimulated
    brillouin scattering for microwave signal modulation depth increase in optical links,”
    Electron. Lett., vol. 36, no. 11, pp. 944–946, 2000.
    76
    [81] A. Loayssa, D. Benito, and M. J. Garde, “Optical carrier-suppression technique with a
    brillouin-erbium fiber laser,” Opt. Lett., vol. 25, no. 4, pp. 197–199, 2000.
    [82] H. Schmuck, “Comparison of optical millimetre-wave system concepts with regard to
    chromatic dispersion,” Electron. Lett., vol. 31, no. 21, pp. 1848–1849, 1995.
    [83] U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave
    and millimeter-wave links,” IEEE Trans. Microwave Theory Tech., vol. 44,
    no. 10, pp. 1716 – 1724, 1999.
    [84] A. Lebedev, J. J. V. Olmos, M. Iglesias, S. Forchhammer, and I. T. Monroy, “A novel
    method for combating dispersion induced power fading in dispersion compensating
    fiber,” Opt. Express, vol. 21, no. 11, pp. 13617–13625, 2013.
    [85] G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects
    in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microwave
    Theory Tech., vol. 45, no. 8, pp. 1410–1415, 1997.
    [86] J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fibre chromatic dispersion
    penalty on 1550nm millimetrewave optical transmission,” Electron. Lett., vol. 33, no. 6,
    pp. 512–513, 1997.
    [87] A. C. Bordonalli, C. Walton, and A. J. Seeds, “High-performance phase locking of wide
    linewidth semiconductor lasers by combined use of optical injection locking and optical
    phase-lock loop,” J. Lightwave Technol., vol. 17, no. 2, pp. 328–342, 1999.
    [88] N. Kim, J. Shin, E. Sim, C. W. Lee, D. S. Yee, M. Y. Jeon, Y. Jang, and K. H.
    Park, “Monolithic dual-mode distributed feedback semiconductor laser for tunable
    continuous-wave terahertz generation,” Opt. Express, vol. 17, no. 16, pp. 13851–
    138595, 2009.
    [89] C. X. Wang, F. Haider, X. Gao, X.-H. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas,
    S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless
    communication networks,” IEEE Commun. Mag., vol. 52, no. 2, pp. 122–130, 2014.
    [90] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C.
    Zhang, “What will 5G be?,” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1065–1082,
    2014.

    下載圖示 校內:2021-01-01公開
    校外:2021-01-01公開
    QR CODE