| 研究生: |
洪裕涵 Hung, Yu-Han |
|---|---|
| 論文名稱: |
以光注入半導體雷射週期一非線性動態進行應用於光載微波系統之全光訊號處理 Nonlinear period-one dynamics of optically injected semiconductor lasers for optical signal processing in radio-over-fiber links |
| 指導教授: |
黃勝廣
Hwang, Sheng-Kwang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 半導體雷射 、週期一非線性動態 、光載微波通訊系統 、全光訊號處理 、光電微波訊號產生器 、光電微波訊號混頻器 、光電微波放大器 、雙邊帶調制訊號到單邊帶調制訊號轉換器 |
| 外文關鍵詞: | Semiconductor lasers, Nonlinear period-one dynamics, Radio-over-fiber links, Optical signal processing, Photonic microwave generation, Photonic microwave mixing, Photonic microwave amplification, Optical double-sideband to optical single-sideband conversion |
| 相關次數: | 點閱:269 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是研究光注入半導體雷射週期一非線性動態之物理特性,並利用其特性進行光載微波通訊系統中全光訊號處理之應用。週期一非線性動態係光注入半導體雷射非線性動態中的一種,其光譜具有微波震盪之特性,研究指出其微波震盪頻率可調且可調範圍寬廣,可由數十GHz至數百GHz。此外,週期一非線性動態也具有極佳之光波調制深度以及單邊帶調制等特性。本論文乃利用週期一非線性動態所具有之特性進行光載微波通訊系統中全光訊號處理之研究。本研究成功利用週期一非線性動態的微波震盪特性完成高品質光電微波訊號產生器,以及光電微波訊號混頻器,其微波頻率可以光電方式調整,相較於傳統的電子方式,本方法可大幅降低系統建置與維修成本。本研究也利用週期一非線性動態所具有的極佳光波調制深度完成一光電微波放大器,由於此放大率可達20dB以上,可大幅提昇通訊系統的通訊品質以及使用範圍。利用週期一非線性動態之單邊帶調制的特性,我們發展出從雙邊帶調制訊號到單邊帶調制訊號的轉換器,此可改善雙邊帶調制訊號在光纖傳輸中所面臨的微波功率消散(microwave power fading)之問題。
Nonlinear period-one dynamics of semiconductor lasers are investigated in this dissertation for optical signal processing in radio-over-fiber links. When a semiconductor laser is subject to an optical injection, and is operated in period-one dynamics, the period-one dynamics exhibit one strong resonant sideband lower than regeneration of an injection in frequency, but approximately equal in intensity through anti-guidance effect. The period-one dynamics possess distinct optical features including self-sustained microwave oscillation, deep optical modulation depth and optical single-sideband spectrum. By applying these optical features of period-one dynamics, four different signal processing functionalities are proposed and demonstrated in this dissertation. A high quality photonic microwave generation and photonic microwave mixing using the feature of self-sustained microwave oscillation are demonstrated. Photonic microwave amplification adopting the feature of deep optical modulation depth of period-one dynamics is achieved. An effect of microwave power fading in radio-over-fiber links is studied and eliminated using the period-one dynamics possessing an optical single-sideband spectrum.
[1] C. Lim, A. Nirmalathas, and D. Novak, “Techniques for multichannel data transmission
using a multisection laser in millimeter-wave fiber-radio systems,” IEEE Trans.
Microwave Theory Tech., vol. 40, no. 7, pp. 1351–1357, 1999.
[2] A. Ng’oma, D. Fortusini, D. Parekh, W. J. Yang, M. Sauer, S. Benjaminh, W. Hofmann,
M. C. Amann, and C. J. Chang-Hasnain, “Performance of a multi-Gb/s 60 GHz radio
over fiber system employing a directly modulated optically injection-locked VCSEL,”
J. Lightwave Technol., vol. 28, no. 16, pp. 2436–2444, 2010.
[3] C. C. Cui and S. C. Chan, “Performance analysis on using period-one oscillation of
optically injected semiconductor lasers for radio-over-fiber uplinks,” IEEE J. Quantum
Electron., vol. 48, no. 4, pp. 490–499, 2012.
[4] M. Zhu, L. Zhang, S. H. Fan, C. Su, G. Gu, and G. K. Chang, “Efficient delivery of integrated
wired and wireless services in UDWDM-RoF-PON coherent access network,”
IEEE Photon. Technol. Lett., vol. 24, no. 13, pp. 1127–1129, 2012.
[5] B. Zhu, S. Pan, D. Zhu, and J. Yao, “Wavelength reuse in a bidirectional radio-over-fiber
link based on cross-gain and cross-polarization modulation in a semiconductor optical
amplifier,” Opt. Lett., vol. 38, no. 18, pp. 3496–3498, 2013.
[6] C. Cox, E. Ackerman, R. Helkey, and G. E. Betts, “Techniques and performance of
intensity-modulation direct-detection analog optical links,” IEEE Trans. Microwave
Theory Tech., vol. 45, no. 8, pp. 1375–1383, 1997.
[7] J. R. Tredicce, F. T. Arecchi, G. L. Lippi, and G. P. Puccionis, “Instabilities in lasers
with an injected signal,” J. Opt. Soc. Amer. B, vol. 2, no. 1, pp. 173–183, 1985.
[8] J. R. Tredicce, N. B. Abraham, G. P. Puccioni, and F. T. Arecchi, “On chaos in lasers
with modulated parameters: a comparative analysis,” Opt. Commun., vol. 55, no. 2,
pp. 131–134, 1985.
[9] B. A. Huberman and J. P. Crutchfield, “Chaotic states of anharmonic systems in periodic
fields,” Phys. Rev. Lett., vol. 43, no. 23, pp. 1743–1747, 1979.
69
[10] T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by
external optical injection in semiconductor lasers,” Quantum Semiclass. Opt., vol. 9,
no. 5, pp. 765–784, 1997.
[11] S. K. Hwang and J. M. Liu, “Dynamical characteristics of an optically injected semiconductor
laser,” Opt. Commun., vol. 183, no. 1-4, pp. 195–205, 2000.
[12] T. B. Simpson, “Mapping the nonlinear dynamics of a distributed feedback semiconductor
laser subject to external optical injection,” Opt. Commun., vol. 215, no. 1-3,
pp. 135–151, 2003.
[13] R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection
laser properties,” IEEE J. Quantum Electron., vol. 16, no. 3, pp. 347–355, 1980.
[14] K. Otsuka and J. L. Chern, “High-speed picosecond pulse generation in semiconductor
lasers withincoherent optical feedback,” Opt. Lett., vol. 16, no. 22, pp. 1759–1761,
1991.
[15] G. H. M. van Tartwijk and D. Lenstra, “Semiconductor lasers with optical injection and
feedback,” Quantum Semiclass. Opt., vol. 7, no. 4, pp. 87–143, 1995.
[16] S. Tang and J. M. Liu, “Chaotic pulsing and quasi-periodic route to chaos in a semiconductor
laser with delayed opto-electronic feedbac,” IEEE J. Quantum Electron., vol. 37,
no. 3, pp. 329–336, 2001.
[17] F. Y. Lin and J. M. Liu, “Nonlinear dynamics of a semiconductor laser with delayed
negative optoelectronic feedback,” IEEE J. Quantum Electron., vol. 39, no. 4, pp. 562–
568, 2003.
[18] G. Q. Xia, S. C. Chan, and J. M. Liu, “Multistability in a semiconductor laser with
optoelectronic feedback,” Opt. Express, vol. 15, no. 2, pp. 572–576, 2007.
[19] G. Kozyreff, A. G. Vladimirov, and P. Mandel, “Global coupling with time delay in an
array of semiconductor lasers,” Phys. Rev. Lett., vol. 85, no. 18, pp. 3809–3812, 2000.
[20] R. Vicente, S. Tang, J. Mulet, C. R. Mirasso, , and J. M. Liu, “Synchronization properties
of two self-oscillating semiconductor lasers subject to delayed optoelectronic mutual
coupling,” Physical Review E, vol. 73, no. 4, p. 047201, 2006.
70
[21] S. Donati and S. K. Hwang, “Chaos and high-level dynamics in coupled lasers and their
applications,” Prog. Quantum Electron., vol. 36, no. 2-3, pp. 293–341, 2012.
[22] T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband
noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett.,
vol. 7, no. 7, pp. 709–711, 1995.
[23] T. B. Simpson, J. M. Liu, and A. Gavrielides, “Small-signal analysis of modulation
characteristics in a semiconductor laser subject to strong optical injection,” IEEE J.
Quantum Electron., vol. 32, no. 8, pp. 1456–1468, 1996.
[24] T. B. Simpson and J. M. Liu, “Enhanced modulation bandwidth in injection-locked
semiconductor lasers,” IEEE Photon. Technol. Lett., vol. 9, no. 10, pp. 1322–1324,
1997.
[25] J. M. Liu, H. F. Chen, X. J. Meng, and T. B. Simpson, “Modulation bandwidth, noise,
and stability of a semiconductor laser subject to strong injection locking,” IEEE Photon.
Technol. Lett., vol. 9, no. 10, pp. 1325–1327, 1997.
[26] Y. Okajima, S. K. Hwang, and J. M. Liu, “Experimental observation of chirp reduction
in bandwidth-enhanced semiconductor lasers subject to strong optical injection,” Opt.
Commun., vol. 219, no. 1-6, pp. 357–364, 2003.
[27] S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz intrinsic bandwidth for direct modulation
in 1.3-um semiconductor lasers subject to strong injection locking,” IEEE Photon.
Technol. Lett., vol. 16, no. 4, pp. 972–974, 2004.
[28] S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in
semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron.,
vol. 10, no. 5, pp. 974–981, 2004.
[29] S. C. Chan and J. M. Liu, “Microwave frequency division and multiplication using
an optically injected semiconductor laser,” IEEE J. Quantum Electron., vol. 41, no. 9,
pp. 1142–1147, 2005.
[30] S. K. Hwang and D. H. Liang, “Effects of linewidth enhancement factor on periodone
oscillations of optically injected semiconductor lasers,” Appl. Phys. Lett., vol. 89,
pp. 061120–1, 2006.
71
[31] S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave
transmission using an optically injected semiconductor laser,” Opt. Express, vol. 15,
no. 22, pp. 14921–14935, 2007.
[32] A. Hurtado, J. Mee, M. Nami, I. D. Henning, M. J. Adams, and L. F. Lester, “Tunable
microwave signal generator with an optically-injected 1310nm QD-DFB laser,” Opt.
Express, vol. 21, no. 9, pp. 10772–10778, 2013.
[33] V. Kovanis, A. Gavrielides, T. B. Simpson, and J. M. Liu, “Instabilities and chaos in optically
injected semiconductor lasers,” Appl. Phys. Lett., vol. 67, pp. 2780–2782, 1995.
[34] T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Perioddoubling
cascades and chaos in a semiconductor laser with optical injection,” Phys. Rev. A,
vol. 51, no. 5, pp. 4181–4185, 1995.
[35] F. Y. Lin and J. M. Liu, “Diverse waveform generation using semiconductor lasers for
radar and microwave applications,” IEEE J. Quantum Electron., vol. 40, no. 6, pp. 682–
689, 2004.
[36] W. T. Wu, Y. H. Liao, and F. Y. Lin, “Noise suppressions in synchronized chaos lidars,”
Opt. Express, vol. 18, no. 25, pp. 26155–26162, 2010.
[37] C. H. Cheng, Y. C. Chen, and F. Y. Lin, “Chaos time delay signature suppression
and bandwidth enhancement by electrical heterodyning,” Opt. Express, vol. 23, no. 3,
pp. 2308–2319, 2013.
[38] O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. Stalnacke, and L. Backbom, “30
GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55um
wavelength,” Electron. Lett., vol. 33, no. 6, pp. 488–489, 1997.
[39] Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, “30 GHz bandwidth
1.55um strain-compensated InGaAlAs-InGaAsP MQW laser,” IEEE J. Quantum Electron.,
vol. 9, no. 1, pp. 25 – 27, 1997.
[40] K. Sato, “Semiconductor light sources for 40-Gb/s transmission systems,” J. Lightwave
Technol., vol. 20, no. 12, pp. 2035 – 2043, 2002.
[41] R. G. Walker, “High-speed III-V semiconductor intensity modulators,” IEEE J. Quantum
Electron., vol. 27, no. 3, pp. 654 – 6677, 1991.
72
[42] J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very
narrow linewidth millimetre wave signals,” Electron. Lett., vol. 28, no. 25, pp. 2309–
2311, 1992.
[43] T. Ido, S. Tanaka, M. Suzuki, M. Koizumi, H. Sano, and H. Inoue, “Ultra-high-speed
multiple-quantum-well electro-absorption optical modulators with integrated waveguides,”
J. Lightwave Technol., vol. 14, no. 9, pp. 2026–2034, 1996.
[44] U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjzr, S. Lindgren,
and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of
3-18 GHz microwave carriers,” IEEE Photon. Technol. Lett., vol. 4, no. 8, pp. 936–938,
1992.
[45] Z. F. Fan and M. Dagenais, “Optical generation of a mhz-linewidth microwave signal
using semiconductor lasers and a discriminator-aided phase-locked loop,” IEEE Trans.
Microwave Theory Tech., vol. 45, no. 8, pp. 1296–1300, 1997.
[46] L. N. Langley, M. D. Elkin, C. Edge, M. J. Wale, U. Gliese, X. Huang, and A. J. Seeds,
“Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation,
processing and transmission of microwave signals,” IEEE Trans. Microwave
Theory Tech., vol. 47, no. 7, pp. 1257–1264, 1999.
[47] Y. Ji, X. S. Yao, and L. Maleki, “Compact optoelectronic oscillator with ultra-low phase
noise performance,” Electron. Lett., vol. 35, no. 18, pp. 1554 – 1555, 1999.
[48] X. S. Yao, L. Davis, and L. Maleki, “Coupled optoelectronic oscillators for generating
both RF signal and optical pulses,” J. Lightwave Technol., vol. 18, no. 1, pp. 73 – 78,
2000.
[49] Y. Jiang, G. Bai, L. Hu, H. Li, Z. Zhou, J. Xu, and S. Wang, “Frequency locked singlemode
optoelectronic oscillator by using low frequency RF signal injection,” IEEE Photon.
Technol. Lett., vol. 25, no. 4, pp. 382 – 384, 2013.
[50] M. G. Thompson, A. R. Rae, M. Xia, R. V. Penty, and I. H. White, “InGaAs Quantum-
Dot Mode-Locked laser diodes,” IEEE J. Sel. Top. Quantum Electron., vol. 15, no. 3,
pp. 661– 672, 2009.
73
[51] J. Schröder, T. D. Vo, , and B. J. Eggleton, “Repetition-rate-selective, wavelengthtunable
mode-locked laser at up to 640 GHz,” Opt. Lett., vol. 34, no. 24, pp. 3902–3904,
2009.
[52] K. G. Wilcox, A. H, Quarterman, H. E. Beere, D. A. Ritchie, and A. C. Tropper,
“Repetition-frequency-tunable mode-locked surface emitting semiconductor laser between
2.78 and 7.87 GHz,” Opt. Express, vol. 19, no. 23, pp. 23453–23459, 2011.
[53] D. Wake, C. R. Lima, and P. A. Davies, “Optical generation of millimeter- wave signals
for fiber-radio systems using a dual-mode DFB semiconductor laser,” IEEE Trans.
Microwave Theory Tech., vol. 43, no. 9, pp. 2270–2276, 1995.
[54] C. Lima, D. Wake, and P. Davies, “Compact optical millimetre-wave source using a
dual-mode semiconductor laser,” Electron. Lett., vol. 31, no. 5, pp. 364 – 365, 1995.
[55] X. Chen, Z. Deng, and J. Yao, “Photonic generation of microwave signal using a dualwavelength
single-longitudinal-mode fiber ring laser,” IEEE Trans. Microwave Theory
Tech., vol. 54, no. 2, pp. 804–809, 2006.
[56] T. B. Simpson and F. Doft, “Double-locked laser diode for microwave photonics applications,”
IEEE Photon. Technol. Lett., vol. 11, no. 11, pp. 1476–1478, 1999.
[57] S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation
using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron., vol. 10,
no. 5, p. 1025–1032, 2004.
[58] J. P. Zhuang and S. C. Chan, “Tunable photonic microwave generation using optically
injected semiconductor laser dynamics with optical feedback stabilization,” Opt. Lett.,
vol. 38, no. 3, p. 344–346, 2013.
[59] T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth
sharpening via polarizationrotated feedback in optically-injected semiconductor laser
oscillators,” IEEE J. Sel. Top. Quantum Electron., vol. 19, no. 4, p. 1500807, 2013.
[60] K. H. Lo, S. K. Hwang, and S. Donati, “Optical feedback stabilization of photonic
microwave generation using period-one nonlinear dynamics of semiconductor lasers,”
Opt. Express, vol. 22, no. 15, p. 18648–18661, 2014.
74
[61] I. Aldaya, J. Beas, G. Castanon, G. Campuzano, and A. Aragon-Zavala, “A survey of
key-enabling components for remote millimetric wave generation in radio over fiber
networks,” Opt. Laser Technol., vol. 49, p. Opt. Laser Technol., 2013.
[62] F. van Dijk, A. Enard, X. Buet, F. Lelarge, and G. Duan, “Phase noise reduction of a
quantum dash mode-locked laser in a millimeter-wave coupled optoelectronic oscillator,”
J. Lightwave Technol., vol. 26, no. 15, pp. 2789–2794, 2008.
[63] G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency
signal-generation system with over seven octaves of continuous tuning,” Nature
Photon., vol. 7, p. 118–122, 2013.
[64] M. J. W. Rodwell, D. M. Bloom, and K. J. Weingarten, “Subpicosecond laser timing
stabilization,” IEEE J. Quantum Electron., vol. 25, no. 4, p. 817–827, 1989.
[65] S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber am-to-fm upconversion
using an optically injected semiconductor laser,” Opt. Lett., vol. 31, no. 15, p. 2254–
2256, 2006.
[66] G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, “Microwave optical mixing in
LiNbO3 modulators,” IEEE Trans. Microwave Theory Tech., vol. 41, no. 12, pp. 2383–
2391, 1993.
[67] C. K. Sun, R. J. Orazi, and S. A. Pappert, “Efficient microwave frequency conversion
using photonic link signal mixing,” IEEE Photon. Technol. Lett., vol. 8, no. 1, pp. 154–
156, 1996.
[68] R. Helkey, J. C. Twichell, and C. Cox, “A down-conversion optical link with RF gain,”
J. Lightwave Technol., vol. 15, no. 6, pp. 956–961, 1997.
[69] H. J. Song and J. I. Song, “Simultaneous all-optical frequency downconversion technique
utilizing an SOA-MZI for WDM radio over fiber (RoF) applications,” J. Lightwave
Technol., vol. 24, no. 8, pp. 3028–3034, 2006.
[70] V. R. Pagan, B. M. Haas, and T. E. Murphy2, “Linearized electrooptic microwave downconversion
using phase modulation and optical filtering,” Opt. Express, vol. 19, no. 2,
pp. 883–895, 2011.
75
[71] C. Bohemond, T. Rampone, and A. Sharaiha, “Performances of a photonic microwave
mixer based on cross-gain modulation in a semiconductor optical amplifier,” J. Lightwave
Technol., vol. 29, no. 16, pp. 2402–2409, 2011.
[72] E. H. W. Chan and R. A. Minasian, “Microwave photonic downconverter with high
conversion efficiency,” J. Lightwave Technol., vol. 30, no. 23, pp. 3580–3585, 2012.
[73] E. H. W. Chan and R. A. Minasian, “High conversion efficiency microwave photonic
mixer based on stimulated brillouin scattering carrier suppression technique,” Opt. Lett.,
vol. 38, no. 24, pp. 5292–5295, 2011.
[74] M. J. LaGasse, W. Charczenko, M. C. Hamilton, and S. Thaniyavarn, “Optical carrier
filtering for high dynamic range fibre optic links,” Electron. Lett., vol. 30, no. 25,
pp. 2157–2158, 1994.
[75] R. D. Esman and K. J. Williams, “Wideband efficiency improvement of fiber optic
systems by carrier subtraction,” IEEE Photon. Technol. Lett., vol. 7, no. 2, pp. 218–
220, 1995.
[76] S. Xiao and A. M. Weiner, “Optical carrier-suppressed single sideband (O-CS-SSB)
modulation using a hyperfine blocking filter based on a virtually imaged phased-array
(VIPA),” IEEE Photon. Technol. Lett., vol. 17, no. 7, pp. 1522–1524, 2005.
[77] D. S. Glassner, M. Y. Frankel, and R. D. Esman, “Reduced loss microwave fiberoptic
links by intracavity modulation and carrier suppression,” IEEE Microwave Guided
Wave Lett., vol. 7, no. 3, pp. 57–59, 1997.
[78] C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of
optical carrier-to-sideband ratio for improving transmission performance in fiber-radio
links,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 5, pp. 2181–2187, 2006.
[79] K. J. Williams and R. D. Esman, “Stimulated brillouin scattering for improvement of
microwave fibre-optic link efficiency,” Electron. Lett., vol. 30, no. 23, pp. 1965–1966,
1994.
[80] S. Tonda-Goldstein, D. Dolfi, J. P. Huignard, G. Charlet, and J. Chazelas, “Stimulated
brillouin scattering for microwave signal modulation depth increase in optical links,”
Electron. Lett., vol. 36, no. 11, pp. 944–946, 2000.
76
[81] A. Loayssa, D. Benito, and M. J. Garde, “Optical carrier-suppression technique with a
brillouin-erbium fiber laser,” Opt. Lett., vol. 25, no. 4, pp. 197–199, 2000.
[82] H. Schmuck, “Comparison of optical millimetre-wave system concepts with regard to
chromatic dispersion,” Electron. Lett., vol. 31, no. 21, pp. 1848–1849, 1995.
[83] U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave
and millimeter-wave links,” IEEE Trans. Microwave Theory Tech., vol. 44,
no. 10, pp. 1716 – 1724, 1999.
[84] A. Lebedev, J. J. V. Olmos, M. Iglesias, S. Forchhammer, and I. T. Monroy, “A novel
method for combating dispersion induced power fading in dispersion compensating
fiber,” Opt. Express, vol. 21, no. 11, pp. 13617–13625, 2013.
[85] G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects
in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microwave
Theory Tech., vol. 45, no. 8, pp. 1410–1415, 1997.
[86] J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fibre chromatic dispersion
penalty on 1550nm millimetrewave optical transmission,” Electron. Lett., vol. 33, no. 6,
pp. 512–513, 1997.
[87] A. C. Bordonalli, C. Walton, and A. J. Seeds, “High-performance phase locking of wide
linewidth semiconductor lasers by combined use of optical injection locking and optical
phase-lock loop,” J. Lightwave Technol., vol. 17, no. 2, pp. 328–342, 1999.
[88] N. Kim, J. Shin, E. Sim, C. W. Lee, D. S. Yee, M. Y. Jeon, Y. Jang, and K. H.
Park, “Monolithic dual-mode distributed feedback semiconductor laser for tunable
continuous-wave terahertz generation,” Opt. Express, vol. 17, no. 16, pp. 13851–
138595, 2009.
[89] C. X. Wang, F. Haider, X. Gao, X.-H. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas,
S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless
communication networks,” IEEE Commun. Mag., vol. 52, no. 2, pp. 122–130, 2014.
[90] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C.
Zhang, “What will 5G be?,” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1065–1082,
2014.