| 研究生: |
許育瑋 Hsu, Yu-Wei |
|---|---|
| 論文名稱: |
不同入水深度之筐網圓柱對動床底床變化之試驗研究 Experimental Study on Movable-Bed Elevations for Porous Cylinders with Different Submerged Height |
| 指導教授: |
黃進坤
Huang, Chin-Kun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 透水圓柱 、孔隙率 、動床 、底床變動 |
| 外文關鍵詞: | Porous cylinder, Porosity, Live-bed, Variation of bed |
| 相關次數: | 點閱:82 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究係在實驗室的直線渠道中進行渾水沖刷之試驗,模擬單支筐網圓柱抬升、埋入底床及潛沒水面下等三種狀況,主要探討不同入水高度之筐網對於底床變動以及流速分布之影響。
本文試驗參數主要有三項:筐網的入水深度ho、表面孔隙率ε和流量Q。其中筐網入水深度又可細分成三類行為:抬升(hz>0)、埋入(hz<0)及潛沒(hs>0);孔隙率ε則採用0.5及0;流量有Q1=0.039cms(Fr=0.44)及Q2=0.021cms(Fr=0.72)。在Q1時,筐網抬升高度、埋入深度及潛沒深度分別為0、0.21及0.43倍水深,其中抬升高度更達0.86倍水深;在Q2時,筐網設置高(深)度則僅0及0.45倍水深,用以與Q1流況之設置高(深)度0及0.43倍水深比較。
接著將三項參數進行一系列討論:(1)整體沖淤變化、(2)縱斷面底床沖淤變化、(3)沖刷、淤積量、(4)流速分布。而根據試驗結果,比較各個筐網設置高(深)度、不同孔隙率和不同流量,並得到筐網的入水深度ho與最大淤積高度dmax、最大沖刷深度dmin之關係式。
試驗結果得知,若筐網圓柱表面孔隙率為0.5時,其水下高度對周圍最大沖刷深度影響很小,而最大沖刷深度之範圍為0.3到0.6倍筐網直徑;若表面孔隙率為0時,筐網水下之高度增加則其最大沖刷深度逐漸變大。因此當ε=0.5之筐網埋入底床深度為0.45倍水深時,無論福祿數Fr=0.44或0.72條件下筐網基礎皆不會裸露;ε=0則皆會裸露。除此之外,筐網的入水深度亦與其背水面淤積丘最大高度呈正相關。
The main purpose of this study is to observe change of live-bed elevation and velocity distribution in a straight channel in laboratory due to single porous cylinder raised up or buried in bed or surmerged underwater.
Three experimental parameters of this study are: submerged height of porous cylinder (ho), porosity (ε) and flow (Q).The different ho could represent three acts: raised up (hz>0), buried in bed (hz<0) and surmerged underwater (hs>0); and two porosities (ε) are 0.5 and 0; and two flows are Q1 = 0.039 cms (Fr = 0.44) and Q2 = 0.021cms (Fr = 0.72). In Q1, the heights of porous cylinder raised up or buried in bed or surmerged underwater are respectively 0, 0.21 and 0.43 times water depth, especially hz is up to 0.86 time water depth; in Q2, the heights of porous cylinder raised up or buried in bed or surmerged underwater are 0 and 0.45 times water depth, which compared with 0 and 0.43 times water depth in Q1.
Then, the three parameters are discussed as following: (1) the overall scour and deposition, (2) the changes scour and deposition in longitudinal section, (3) the maximum scour and deposition, (4) velocity distribution. According to the results, compare different ho, ε and Q. Finally, we get the relationship of the ho and the maximum deposition height (dmax) and maximum scour depth (dmin).
The experiment results showed that the surmerged porous cylinder heights rarely influenced the maximum scour depth while porosity was 0.5, and the range of maximum scour depth was 0.3 to 0.6 times diameter of the cylinders; the maximum scour depth increased with the increase of the surmerged porous cylinder heights while porosity was 0. Furthermore, the maximum deposition height was associated with the surmerged porous cylinder heights.
1. Adaramola, M.S., Akinlade, O.G., Sumner, D., Bergstrom, D.J. and Schenstead, A.J. (2006), “Turbulent wake of a finite circular cylinder of small aspect ratio,” Journal of Fluids and Structures, 22, pp.919-928.
2. Akilli, H. and Rockwell, D. (2002), “Vortex formation from a cylinder in shallow water,” Physics of Fluids, 14(9), pp.957-2967.
3. Amini A., Melville, B.W., Ali, T.M. and Ghazali, A.H. (2012), “Clear-Water Local Scour around Pile Groups in Shallow-Water Flow,” Journal of Hydraulic Engineering, 138(2), pp.177-185.
4. Bhattacharyya, S., Dhinakaran, S. and Khalili, A. (2006), “Fluid motion around and through a porous cylinder,” Chemical Engineering Science, 61(13), pp.4451-4461.
5. Euler, T. and Herget, J. (2012), “Controls on local scour and deposition induced by obstacles in flluvial environments,” Catena, 91, pp.35-46.
6. Fransson, J. H. M., Konieczny, P. and Alfredsson, P. H. (2004), “Flow around a porous cylinder subject to continuous suction or blowing,” Journal of Fluids and Structures, 19, pp.1031-1048.
7. Grimaldi, C., Gaudio, R., Calomino, F., and Cardoso, A. H. (2009), “Control of Scour at Bridge Piers by a Downstream Bed Sill,” Journal of Hydraulic Engineering, 135(1), pp.13-21.
8. Khorsandi, B., Mydlarski, L. and Gaskin, S. (2009), “Noise in Turbulence Measurements Using Acoustic Doppler Velocimetry,” Journal of Hydraulic Engineering, 138, pp.829-838.
9. Lienhard, J.H. (1966), “Synopsis of Lift, Drag, and Vortex Frequency Data for Rigid Circular Cylinders,” Washington State University, College of Engineering, Research Division Bulletin 300.
10. Marakkos, K. and Turner, J.T. (2005), “Vortex generation in the cross-flow around a cylinder attached to an end-wall,” Optics & Laser Technology, 38, pp.277-285.
11. Mathelin, L., Bataille, F. and Lallemand, A. (2001), “Near wake of a circular cylinder submitted to blowing – II: Impact on the dynamics,” International Journal of Heat and Mass Transfer, 44(19), pp.3709-3719.
12. Mathelin, L., Bataille, F. and Lallemand, A. (2002), “The effect of uniform blowing on the flow past a circular cylinder,” Journal of Fluids Engineering, 124 (2), pp.452-464.
13. Melville, B.W. and Chiew, Y.M. (1999), “Time Scale for Local Scour at Bridge Piers,” Journal of Hydraulic Engineering, 125(1), pp.59-65.
14. Melville, B.W. and Coleman, S.E. (2000) “Bridge Scour”, Water Resources Publications, LLC.
15. Munshi, S.R., Modi, V.J. and Yokomizo, T. (1997), “Aerodynamics and dynamics of rectangular prisms with momentum injection,” Journal of Fluids and Structures, 11(8), pp.873-892.
16. Ozgoren, M. (2005), “Flow structure in the downstream of square and circular cylinders,” Flow Measurement and Instrumentaion, 17(4), pp.225-235.
17. Tafarojnoruz, A., Gaudio, R., and Calomino, F. (2012), “Evaluation of Flow-Altering Countermeasures against Bridge Pier Scour,” Journal of Hydraulic Engineering, 138(3), pp.297-305.
18. Von Karman, T. (1912), “Über den Mechanismuss des Windersstandes, den ein bewegter Körper in einer Flüssigkeit erfährt,” Nachrichten der k. Gesellschaft der Wissenschaften zu Göttingern, pp.547-556.
19. Zarrati, A.R, Nazariha M. and Mashahir, M.B. (2006), “Reduction of Local Scour in the Vicinity of Bridge Pier Groups Using Collars and Riprap,” Journal of Hydraulic Engineering, 132(2), pp.154-162.
20. 王雅文 (2010),「雙排 “成功筐網"對彎道凹岸沖刷保護之研究」,國立成功大學水利及海洋工程研究所碩士論文。
21. 王譯興 (2011),「單排成功筐網對底床變化之試驗研究」,國立成功大學水利及海洋工程研究所碩士論文。
22. 石武融 (2007),「透水性筐網圓柱之流場試驗研究」,國立成功大學水利及海洋工程研究所碩士論文。
23. 朱宏翊 (2007),「筐網群結構物對橋墩沖刷保護效果之研究」,國立成功大學水利及海洋工程研究所碩士論文。
24. 吳虹邑 (2005),「筐網結構物對橋墩沖刷保護之研究」,國立成功大學水利及海洋工程研究所碩士論文。
25. 洪思維 (2008),「透水筐網圓柱距離底床不同高度之流場試驗研究」,國立成功大學水利及海洋工程研究所碩士論文。
26. 洪銘堃 (2010),「透水性筐網圓柱之流場試驗研究」,國立成功大學水利及海洋工程研究所碩士論文。
27. 洪勝榮、張三郎、黃進坤、洪丕振、徐立昌 (2006),「筐網結構物對凹岸沖刷保護現地測試探討」,水利,第16期,頁97-103。
28. 徐華勇 (2002),「應用PIV探討圓柱及平版尾流流場之速度分佈特性」,國立中興大學土木工程研究所碩士論文。
29. 徐淑女 (2010),「三角形排列之筐網圓柱群對橋墩沖刷防護之研究」,國立嘉義大學土木與水資源工程學系碩士論文。
30. 陳宴民 (2008),「以透水性筐網圓柱保護堤岸之案例研究」,逢甲大學水利工程與資源保育學系碩士班碩士論文。
31. 陳林偉 (2008),「成功筐網導流工對彎道丁壩沖刷保護之研究」,國立成功大學水利及海洋工程研究所碩士論文。
32. 梁景俊 (2009),「透水性筐網圓柱群之流場試驗研究」,國立成功大學水利及海洋工程研究所碩士論文。
33. 傅家揚 (2006),「筐網結構物在不同水流攻角對橋墩沖刷保護之影響」,國立成功大學水利及海洋工程研究所碩士論文。
34. 黃進坤 (2006),「橋墩保護新工法之研究」,台灣公路工程,第32卷第8期,頁39-44。
35. 黃俊傑 (2008),「筐網群角度變化對地形變動之影響」,國立成功大學水利及海洋工程研究所碩士論文。
36. 黃怡仁 (2009),「直排筐網群樁於渠道中之沖淤現象」,國立成功大學水利及海洋工程研究所碩士論文。
37. 辜偉倫 (2009),「"成功筐網"對彎道凹岸沖刷保護之研究」,國立成功大學水利及海洋工程研究所碩士論文。
38. 曾玟義 (2012),「成功筐網對減少橋墩沖刷之現地試驗」,國立成功大學水利及海洋工程研究所碩士論文。
39. 經濟部水利署水利規劃試驗所(2012),「研發透水性結構物以防治河岸沖刷之實驗與數值模擬」。
40. 劉亮成 (2011),「單排"成功筐網"於不同流量下彎道地形之研究」,國立成功大學水利及海洋工程研究所碩士論文。
41. 鄭聰信 (2007),「橋墩沖刷保護機構之現地實驗與探討」,國立成功大學水利及海洋工程研究所碩士論文。
42. 蘇俞銘 (2012),「成功筐網導流效應對底床變化之現地試驗」,國立成功大學水利及海洋工程研究所碩士論文。