簡易檢索 / 詳目顯示

研究生: 陳明鴻
Chen, Ming-Hung
論文名稱: 氣喘患者其分歧管流之數值研究
Numerical Study of Bifurcating Airway Flow in Asthmatics
指導教授: 黃啟鐘
Huang, Chi-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 74
中文關鍵詞: 氣喘分歧管壓力更正方程式四面體網格建立
外文關鍵詞: Asthma, Bifurcating Airway, Pressure Correction Equation, Tetrahedral Mesh Generation
相關次數: 點閱:119下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來空氣污染的問題越來越嚴重,造成許多人產生呼吸系統上的疾病(如氣喘)。為有效使用藥物噴劑,探討氣管內流場現象是一重要且有意義之工作。此一方面之研究可分為實驗、數值模擬及理論分析,在此將利用計算流體力學之方法探討空氣流經氣喘患者分歧管之行為。首先利用Ansys FLUENT商用軟體進行三維不可壓縮流之計算,然後以自行開發之可壓縮程式探討此問題。由於氣體為可壓縮流且在大部分呼吸狀態下屬於低馬赫數範圍,因此本文建立一可求解低馬赫數可壓縮流之數值法及程式。為探討氣管流,首先利用CATIA設計軟體建立氣管模型(分歧管)。然後利用介面程式,將CATIA設計軟體及自行發展之網格程式結合,以便在流場區域建立非結構四面體。在上述網格上,本研究建立一數值法以求解三維非穩態拿維-史脫克方程式。此數值方法包含四步Runge-Kutta時間積分法、 Roe通量差分分離法及求解Rossow壓力更正方程式之改良式Gauss-Seidel疊代法。為提昇計算效率,本研究在單機多核心之個人電腦上進行平行運算。為評估上述求解法及相關程式,首先探討典型之分歧管穩態層流,且將本計算解與Ansys FLUENT商業軟體所得之解與相關實驗值比較。接著進行氣喘患者分歧管之穩態層流計算,並將計算解與相關文獻之結果比較。由計算結果可觀察入口端、分歧部分及出口端之速度分佈。除了探討二次流、渦流等物理現象外,可分析氣喘患者與正常人分歧管流之差異。

    In recent years, the air pollution problem is getting more and more serious, and it causes many people to have on respiratory system disease (such as asthma). For effectively inhaling the medicinal preparations, the study of flow phenomena in bifurcating airway is important and meaningful. About this topic, the research approaches may divide into experiment, numerical simulation and theoretical analysis. By using the method of computational fluid dynamics, the behavior of air flow passing through the bifurcating airway in asthmatics is investigate in this thesis. First, the FLUENT software is utilized to compute the three-dimensional incompressible flow, then a self developed compressible flow code is used to steady the problem. Because the air flow is compressible and it is within the low Mach number flow regime in the majority of breathing conditions, a numerical approach and related program are developed in this thesis to solve the low-speed compressible flows. To investigate the flow in bifurcating airway, the CATIA software is adopted to construct the trachea model (bifurcating tube). Then an interface program is adopted, so that the CATIA software and homemade mesh-generation program are combined together to construct the unstructured tetrahedral meshes in the flow domain. On the above-mentioned meshes, a numerical approach is developed to solve the unsteady three-dimensional Navier-Stokes equations. This approach includes four-step Runge-Kutta time-integration scheme, Roe’s flux-difference splitting method and Modified Gauss-Seidel iterative method for solving the Rossow’s pressure correction equation. To promote the computational efficiency, it is operated on a personal computer with multiple cores. To evaluate the above-mentioned numerical approach and related program, the steady laminar flow passing through a typical bifurcating airway is studied first, and the computed results by using the present method and FLUENT code are compared with the related experimental data. Then, the steady laminar flow passing through an asthmatic bifurcating airway is studied, and the present solutions are compared with the results in the related paper. From the computed results, the velocity distributions on the inlet, outlet and branch part of airway are observed. Besides the secondary flow and vortex phenomena are investigated, the difference between normal and asthmatic airway flows are analyzed.

    中文摘要 …………………………………………………………………I Abstract ………………………………………………………………III 誌謝………………………………………………………………………VI 目錄 ……………………………………………………………………VII 表目錄 ……………………………………………………………………X 圖目錄……………………………………………………………………XI 符號說明 ………………………………………………………………XVI 第一章 緒 論…………………………………………………………1 1-1 前言……………………………………………………………1 1-2 動機與目的……………………………………………………1 1-3 文獻回顧………………………………………………………2 1-4 研究內容………………………………………………………5 第二章 數 值 方 法…………………………………………………6 2-1 數值方法(一)…………………………………………………6 2-1-1 統御方程式………………………………………………6 2-1-2 SIMPLEC演算法… ………………………………………8 2-1-3 QUICK法…………………………………………………11 2-2 數值方法(二)…………………………………………………11 2-2-1 有限體積上風法………………………………………12 2-2-2 壓力修正方程式………………………………………12 2-2-3 時間積分………………………………………………13 2-3 邊界條件………………………………………………………13 第三章 網 格 生 成………………………………………………15 3-1 幾何外型建立…………………………………………………15 3-2 網格生成………………………………………………………16 3-3 網格疏密對流場解之影響……………………………………17 第四章 結 果 與 討 論……………………………………………18 4-1 流場程式之驗證………………………………………………18 4-1-1 正常人之二級分歧管黏性層流驗證…………………18 4-1-2 氣喘患者之二級分歧管黏性層流驗證………………19 4-2 正常與氣喘之二級分歧管層流………………………………20 4-2-1 二級分歧管層流………………………………………20 4-2-2 正常與氣喘之三級分歧管層流………………………23 第五章 結 論 與 建 議……………………………………………24 5-1 結論……………………………………………………………24 5-2 建議……………………………………………………………25 參考文獻…………………………………………………………………26 表目錄 表4.1為5-6級Weibel【1】人體肺部分歧管幾何外型參數 …………30 圖目錄 圖1.1正常人氣管圖 ……………………………………………………31 圖1.2氣喘病變之氣管圖 ………………………………………………31 圖2.1交錯格點系統 ……………………………………………………32 圖2.2 SIMPLEC計算流程圖 ……………………………………………33 圖2.3 QUICK-Scheme之一維控制體積系統 …………………………34 圖3.1網格數驗證 ………………………………………………………35 圖4.1 Zhao and Lieher【2】5-6級二級分歧管模型 ………………35 圖4.2 Zhao and Lieher【2】5-6級二級分歧管四面體網格 ………36 圖4.3 Zhao and Lieher【2】截面示意圖 …………………………36 圖4.4 5-6級二級分歧管中位置5截面上之軸向速度分佈……………37 圖4.5 5-6級二級分歧管中位置5截面上之速度向量分佈……………37 圖4.6 5-6級二級分歧管中位置10截面上之軸向速度大小分佈 ……38 圖4.7 5-6級二級分歧管中位置10截面上之速度向量分佈 …………38 圖4.8 5-6級二級分歧管中位置15截面上之軸向速度分佈 …………39 圖4.9 5-6級二級分歧管中位置15截面上之速度向量分佈 …………39 圖4.10 5-6級二級分歧管中位置15截面上之水平速度分佈…………40 圖4.11 5-6級二級分歧管中位置15截面上之垂直速度分佈…………40 圖4.12收斂圖……………………………………………………………41 圖4.13二級皺褶正弦之分歧管模型……………………………………41 圖4.14二級皺褶線性之分歧管模型……………………………………42 圖4.15二級皺褶正弦之分歧管網格圖…………………………………42 圖4.16二級皺褶線性之分歧管網格圖…………………………………43 圖4.17二級分歧管截面圖………………………………………………43 圖4.18 A截面處之速度向量(a)FoldSin(b)FoldLinear ……………44 圖4.19 A截面處之速度大小(a)FoldSin(b)FoldLinear ……………45 圖4.20 B截面處之速度向量(a)FoldSin(b)FoldLinear ……………46 圖4.21 B截面處之速度大小(a)FoldSin(b)FoldLinear ……………47 圖4.22 C截面處之速度向量(a)FoldSin(b)FoldLinear ……………48 圖4.23 C截面處之速度大小(a)FoldSin(b)FoldLinear ……………49 圖4.24 A截面處水平面上之速度分佈…………………………………50 圖4.25 B截面處水平面上之速度分佈 ………………………………50 圖4.26 C截面處水平面上之速度分佈…………………………………51 圖4.27正常管A截面處之速度向量 ……………………………………52 圖4.28皺褶管A截面處之速度向量 ……………………………………52 圖4.29正常管A截面之速度大小 ………………………………………53 圖4.30皺褶管A截面處之速度大小 ……………………………………53 圖4.31 A截面處水平面上之速度分佈…………………………………54 圖4.32 A截面處垂直面上之速度分佈…………………………………54 圖4.33正常管B截面處之速度向量 ……………………………………55 圖4.34皺褶管B截面處之速度向量 ……………………………………55 圖4.35正常管B截面處之速度大小 ……………………………………56 圖4.36皺褶管B截面處之速度大小 ……………………………………56 圖4.37 B截面處水平面上之速度分佈…………………………………57 圖4.38 B截面處垂直面上之速度分佈…………………………………57 圖4.39正常管C截面處之速度向量 ……………………………………58 圖4.40皺褶管C截面處之速度向量 ……………………………………58 圖4.41正常管C截面處之速度大小 ……………………………………59 圖4.42皺褶管C截面處之速度大小 ……………………………………59 圖4.43 C截面處水平面上之速度分佈…………………………………60 圖4.44 C截面處垂直面上之速度分佈 ………………………………60 圖4.45 阻力大小 ………………………………………………………61 圖4.46 壓降大小 ………………………………………………………61 圖4.47 壓力係數 ………………………………………………………62 圖4.48正常三級分歧管網格圖…………………………………………62 圖4.49皺褶三級分歧管網格圖…………………………………………63 圖4.50三級分歧管截圖面………………………………………………63 圖4.51正常管A截面處之速度向量 ……………………………………64 圖4.52皺褶管A截面處之速度向量 ……………………………………64 圖4.53正常管A截面處之速度大小 ……………………………………65 圖4.54皺褶管A截面處之速度大小 ……………………………………65 圖4.55 A截面處水平面上之速度分佈…………………………………66 圖4.56 A截面處垂直面上之速度比較 ………………………………66 圖4.57正常管B截面處之速度向量 ……………………………………67 圖4.58皺褶管B截面處之速度向量 ……………………………………67 圖4.59正常管B截面處之速度大小 ……………………………………68 圖4.60皺褶管B截面處之速度大小 ……………………………………68 圖4.61 B截面處水平面上之速度分佈…………………………………69 圖4.62 B截面處垂直面上之速度分佈 ………………………………69 圖4.63正常管C截面處之速度向量 ……………………………………70 圖4.64皺褶管C截面處之速度向量 ……………………………………70 圖4.65正常管C截面處之速度大小 ……………………………………71 圖4.66皺褶管C截面處之速度大小 ……………………………………71 圖4.67 C截面處水平面上之速度分佈…………………………………72 圖4.68 C截面處垂直面上之速度分佈…………………………………72 圖4.69 阻力大小 ………………………………………………………73 圖4.70 壓降大小 ………………………………………………………73 圖4.71 壓力係數 ………………………………………………………74

    【1】 Weibel, E. R., “Morphometry of the Human Lung,” Academic Press, 1963, New York, Springer, Berlin.
    【2】 Zhao, Y., and Lieber, B. B., “Steady Inspiratory Flow in A Model Symmetric Bifurcation,” ASME Journal of Biomechanical Engineering, Vol. 116, 1994, pp. 488-496.
    【3】 Zhao, Y., and Brunskill, C. T., and Lieber, B. B., “Inspiratory and Expiratory Steady Flow Analysis in A Model Symmetrically Bifurcating Airways,” ASME Journal of Biomechanical Engineering, Vol. 119, 1997, pp. 52-58.
    【4】 Calay, R. K., Kurujareon, J., Holdo, A. E. “Numerical Simulation of Respiratory Flow Pattern within Human Lung,”Respiratory Physiology & Neurobiology, Vol. 130, pp. 201-221, 2002.
    【5】 Mochizuki, S., “Convective Mass Transport during Ventilation in A Model of Branched Airways of Human Lungs,” Proceedings of Pacific Symposium on Flow Visualization and Image Processing 4, 2003, Chamonix Mont-Blanc, France.
    【6】 Lambert, R. K., Codd, S. L., Alley, M. R., and Pack, R. J., “Physical Determinats of Bronchial Mucosal Folding,” Journal of Applied Physiology, Vol. 77, pp. 1206-1216, 1994.
    【7】 Wiggs, B. R., Hrousis, C. A., Drazen, J. M., and Kamm, R. D.,“On The Mechanism of Mucosal Folding in Normal and Asthmatic Airways,” Journal of Applied Physiology, Vol. 83, pp. 1814-1821, 1997.
    【8】 Hrousis, C. A., Wiggs, B. R., Drazen, J. M., Parks, D. M., and Kamm, R. D.,“Mucosal Folding in Biologic Vessels,” Journal of Biomechanical Engineering, Vol. 124, pp. 334-342, 2002.
    【9】 Ertbruggen, C. V., Hirsch, C., and Paiva, M., “Anatomically Based Three – Dimensional Model of Airways to Simulate Flow and Particle Transport Using Computational Fluid Dynamics,”Journal of Applied Physiology, Vol. 98 , pp. 970-980, 2005.
    【10】 De Backer, J. W., Vos, W. G., Devolder, A., Verhulst, S. L., Germonpré, P., Wuyts, F. L., Parizel, P. M., and De Backer, W., “Computational Fluid Dynamics Can Detect Changes in Airway Resistance in Asthmatics after Acute Bronchodilation,”Journal of Biomechanics, Vol. 41, pp. 106-113, 2008.
    【11】 Donovan, G. M., and Tawhai, M. H., “A Simplified Model of Airway Narrowing Due to Bronchial Mucosal Folding,”Respiratory Physiology & Neurobiology, Vol. 171, pp. 144-150, 2010.
    【12】 Zhang, H., and Papadakis, G., “Computational Analysis of Flow Structure and Particle Deposition in A Single Asthmatic Human Airway Bifurcation,” Journal of Biomechanics, Vol. 43, pp. 2453-2459, 2010.
    【13】 “Ansys Fluent User Guide,” Ver.13, Ansys Inc.
    【14】 Van Doormaal, J. P., and Raithby, G. D., “Enhancements of the SIMPLE Methods for Predicting Incompressible Fluid Flows,” Num. Heat Mass Transfer, Vol. 7, pp. 147-163, 1984.
    【15】 陳正偉、黃啟鐘,“四面體/稜鏡型網格之生成, ”第十八屆全國計算流體力學學術研討會,100年八月.
    【16】 “CATIA Documentation, ”DASSOUALT SYSTEM, 2002.
    【17】 Frink, N. T., Parikh, P., and Pirzadeh, S., “A Fast Upwind Solver for the Euler Equation on Three-Dimensional Unstructured Meshes, ”AIAA Paper 91-0102, 1991.
    【18】 Rossow, C.-C., “A Flux-Splitting Scheme for Compressible and Incompressible Flows,” J. Compt. Phys., Vol. 164, pp. 104-122, 2000.
    【19】 Rossow, C.-C.,“Extension of a Compressible Code Toward the Incompressible Limit,” AIAA Journal, Vol. 41, No. 12, pp. 2379-2386, 2003.
    【20】 Liu, C. Y., and Hwang , C. J., “New Strategy for Unstructured Mesh Generation,” AIAA Journal, vol. 39, No. 6, pp. 1078-1085, June 2001.
    【21】 Wiggs, B. R., Moreno, R., Hogg, J. C., Hilliam, C., and Paré, P. D., “A Model of the Mechanics of Airway Narrowing,” Journal of Applied Physiology, Vol. 69, pp. 849-860, 1990.
    【22】 Dean, W. R.,“Note on the Motion of Fluid in a Curved Pipe,” Philosophical Magazine 4 (Suppl.7), pp. 208-223, 1927.
    【23】 Liu, Y., So, R. M. C., and Zhang, C. H.,“Modeling the Bifurcating Flow in A Human Lung Airway,” Journal of Biomechanical, Vol. 35, pp. 465-473, 2002.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE