簡易檢索 / 詳目顯示

研究生: 彭美娟
Peng, Mei-Chuan
論文名稱: 聚胺基甲酸酯之磺酸化改質與蛋白質前吸附處理於人工膽管支架之膽汁相容性探討
The studies of bile compatibility on polyurethane and sulfonated polyurethane’s biliary stent modified by protein preadsorption
指導教授: 林睿哲
Lin, Jui-Che
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 83
中文關鍵詞: 聚胺基甲酸酯細菌吸附陰離子聚合物磺酸基鹽膽汁相容性蛋白質預吸附親水性
外文關鍵詞: protein preadsorption, bile compatibility, bacterial adhesion, anionomer, sulfonation, polyurethanes, hydrophilicity
相關次數: 點閱:82下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文採用商業化聚胺基甲酸酯(Pellethane®),利用氫化鈉及1,3-丙烷硫酸酯進行親核取代反應,形成磺酸基鹽離子型聚胺基甲酸酯,並進一步以白蛋白(albumin)進行材質表面的預吸附處理,探討材質陰離子基的負電性與蛋白質的生物活性對於人工膽管支架的膽汁相容性是否有增進的效果。在材質的物性測試上,由GPC測量得知改質後的分子量有下降的趨勢,且從穿透式紅外線光譜得知,離子基增加時胺基甲酸酯間的氫鍵有下降趨勢,由DSC測量可知離子基增加,開始時會有相混合的情形,高離子含量時其微相分離程度有增加的趨勢,在接觸角及吸水率測試方面,顯示離子基增加其親水性及吸水性也增加。在蛋白質的處理上,以不同的預吸附時間探討albumin吸附的程度。另外在膽汁相容性測試方面,利用膽汁及Escherichia coli (E.Coli)進行密閉系統下的流動場測試,藉由SEM觀察材質表面細菌附著情形來探討材質與膽汁之相容性,並由培養基菌落生長情形計算吸附於人工膽管上之細菌量。由SEM的觀察發現,磺酸根陰離子基含量高的PU其細菌及膽汁泥狀物吸附情形較未改質前有減少的趨勢。當以緩衝液替代膽汁進行的循環測試時,發現在此兩個系統下細菌吸附的情形差異甚大,推測可能和膽汁中其他成分(如蛋白質、膽鹽等)有關,就磺酸根陰離子對於細菌附著的影響有相似的趨勢。當材質經過albumin預吸附後其表面的細菌附著量也有降低的情形,且albumin預吸附時間較長者對抑制細菌吸附的效果也較為顯著。

    By a bimolecular nucleophilic substitution reaction, sodium hydride and 1,3-propane sultone were used to synthesize sulfonated polyurethanes. From the gel permeation chromatography (GPC) data, the relative molecular weight of the modified polyurethanes decreases after the incorporation of ionic functionalities. Fourier transform infrared (FTIR) spectra indicate the hydrogen bonding between the urethane linkage decreases with the contents of ionic functional groups. Differential scanning calorimetry (DSC) data shows that the phase mixing appears at lower ionic contents and the degree of phase separation increases with higher ionic contents; it’s probably resulted from aggregation of sodium ion on the side chain of ionic group. Surface hydrophilicity and the water absorption ratio both increase with the incorporation of ionic functionality. For the in vitro bile compatibility testing, a decrease in bacterial adhesion and sludge formation was noticed by SEM on the polyurethane with high density of sulfonic acid functionality. Moreover, surface preadsorbed with albumin exhibited lower bacterial adhesion than the unmodified one in PBS buffer solution system. In addition, the bacterial aggregation varied greatly between the buffer solution and human bile under bacteria perfusion experiment.

    中文摘要…………………………………………… Ⅰ 英文摘要…………………………………………… Ⅱ 誌謝………………………………………………… III 表目錄……………………………………………… IV 圖目錄……………………………………………… V 主文 第一章 前言…………………………………………… 1 第二章 緒論…………………………………………… 3 2.1 聚胺基甲酸酯………………………………… 3 2.1.1 聚胺基甲酸酯之材料分析…………………3 2.1.2 聚胺基甲酸酯之微相分離結構……………5 2.2 聚胺基甲酸酯的合成及生醫材料上的應用… 6 2.3 聚胺基甲酸酯的改質………………… 6 2.4 離子聚合物……………………………… 7 2.5 膽道系統…………………………………… 7 2.6 膽囊的功能與膽汁的成份…………………… 7 2.7 膽石形成的因素……………………………… 8 2.7.1 膽汁酸………………………………………8 2.7.2 膽固醇結石形成的因素……………………9 2.7.3 膽色素結石形成的方式……………………9 2.7.4 黃疸症…………………………………… 10 2.8 臨床上治療的方式……………………………11 2.8.1 進行手術切除…………………………… 11 2.8.2 藥物治療………………………………… 11 2.8.3 置入人工膽管…………………………… 12 2.9 人工膽管阻塞及預防方法……………………14 2.9.1 細菌是造成阻塞的主因………………… 14 2.9.2 預防方法………………………………… 14 2.10 膽汁中重要的蛋白質……………………… 15 第三章 文獻回顧…………………………………… 26 3.1 高分子材質與細菌間的相互作用……………26 3.2 蛋白質與材質及細菌間的作用.………… 29 3.3 研究動機與目的………………………….… 30 3.4 研究計劃………………………………………31 第四章 實驗……………………………………… 34 4.1 實驗藥品與處理………………………………34 4.2 實驗儀器………………………………………35 4.3 實驗步驟………………………………………36 4.3.1 Polyurethane之純化…….…………..36 4.3.2 Polyurethane之改質……………………36 4.3.3 PE管氧化程序……………………………37 4.3.4 PU塗層於PE管之程序………………… 37 4.3.5 蛋白質預吸附……..…………………. 38 4.3.6 大腸桿菌之培養與定量…………………39 4.3.7膽汁循環實驗……………………..…… 39 4.3.8細菌吸附量分析 …………………………40 4.4 儀器分析與鑑定………………………………… 40 第五章 結果與討論……… ……………………… 45 5.1 元素分析測定……… ……………… 45 5.2 紅外線光譜分析…………………………… 45 5.3分子量測試……………………………… 47 5.4熱性質測試……….………………………… 47 5.5 吸水性測試……………………………………48 5.6 接觸角測試……………………………………48 5.7聚胺基甲酸酯之流動場細菌循環吸附實驗… 49 5.8細菌吸附量分析..……………….……………50 第六章 結論及未來展望………………………………74 參考文獻……………………………………… .…. 76 表2.1 膽汁中的蛋白質…………………. 24 表2.2 膽汁中蛋白質濃度………………………… 25 表5.1 Pellethane®磺酸化系列之元素分析…… 52 表5.2 Pellethane®磺酸化系列之IR光譜Bonded/Free C=O 比例......................... 52 表5.3 Pellethane®系列之分子量……………… 53 表5.4 Pellethane®磺酸化系列之熱分析……… 53 表5.5 Pellethane®系列之吸水率……………… 54 表5.6 Pellethane®系列之接觸角……………… 54 圖2.1 鏈段式聚胺基甲酸酯的結構…………………16 圖2.2 常見的軟鏈段結構式..………………………16 圖2.3 常見的硬鏈段結構式...…………………… 17 圖2.4 常見的鏈延長劑結構式………………………17 圖2.5 聚胺基甲酸酯之相分離圖……………………18 圖2.6 聚胺基甲酸酯的合成步驟……………………18 圖2.7 離子聚合物之合成途徑………………………19 圖2.8 膽道系統………………………………………19 圖2.9 膽汁組成之結構式……………………………20 圖2.10 膽汁中膠凝粒子的形成….……………..… 20 圖2.11 膽固醇結石的形成方式….………………… 21 圖2.12 膽色素結石的形成……….………………… 21 圖2.13 塑膠人工膽管支架……….………………… 22 圖2.14 膽汁中細菌吸附機制…….………………… 22 圖2.15 膽道細菌吸附機制示意圖.………………… 23 圖2.16 膽汁的組成……………….………………… 23 圖3.1 聚胺基甲酸酯之雙分子親核取代反應....…33 圖3.2 密閉式系統膽汁測試裝置……………………33 圖3.3 Robbins系統膽汁測試裝置.……..…………33 圖4.1 蛋白質吸附裝置圖……………….………… 43 圖4.2 Albumin isothermal adsorption…...……43 圖4.3 Albumin adsorption kinetics……...……44 圖4.4 膽汁循環實驗裝置圖………….…………… 44 圖5.1 Pellethane磺酸基鹽離子化系列之IR光譜…55 圖5.2 Pellethan磺酸基鹽離子化系列之Bonded/Free C=O IR光譜......................... 56 圖5.3 Pellethane塗層在PE tube上FTIR-ATR光譜 57 圖5.4 Pellethsane磺酸基鹽離子化系列之DSC圖譜58 圖5.5 磺酸根離子基在dry及hydrated中之示意圖 59 圖5.6 Pellethane塗層於PE管之SEM圖………… 60 圖5.7 Pellethane系列經24h膽汁循環實驗後 之SEM.................................61 圖5.8 Pellethane系列經24h緩衝液循環實驗 後之SEM...............................63 圖5.9 PE經albumin預吸附後進行24h大腸桿菌 緩衝溶液環系統實驗後之SEM…… 65 圖5.10 OxPE經albumin預吸附後進行24h大腸桿菌 緩衝溶液環系統實驗後之SEM… 66 圖5.11 Pellethane經albumin預吸附後進行24h 大腸桿菌緩衝溶液環系統實驗後之SEM…… 67 圖5.12 Pell-S-0.10經albumin預吸附後進行24h 大腸桿菌緩衝溶液環系統實驗後之SEM…… 68 圖5.13 Pellethane系列進行循環實驗經人工刮除 處理後材質表面之SEM圖……… 69 圖5.14 Pellethane系列經24h膽汁循環細菌吸附 實驗,以人工刮除後計算細菌之吸附 70 圖5.15 PE經24h緩衝液循環細菌吸附實驗,以人 工刮除後計算細菌之吸附量…… 71 圖5.16 OxPE經24h膽汁循環細菌吸附實驗,以人 工刮除後計算細菌之吸附量……… 72 圖5.17 Pelle-S-0.10經24h膽汁循環細菌吸附實驗 ,以人工刮除後計算細菌之吸附量………… 73

    1. O. Bayer, “The dissocyanate polyaddition process (polyurethanes). Description of a new principle for building up high-molecular compounds.” Angewandte Chemie, 59, 257-72. (1947)
    2. J. H. Saunders and K. C. Frisch, “Polyurethane: Chemistry and Technology.” PartⅠandⅡ, Interscience, New York. (1962)
    3. M. D. Lelah, S. L. Cooper, “Polyurethane chemistry.” In “Polyurethane in Medicine.” CRC Press, Boca Raton, FL, USA. (1986)
    4. D. Klempner and K.C. Frisch, “Polymer alloy: Blend, block, grafts and interpenetrating networks.” Plenum Press, New York. (1977)
    5. A. L. Chang and E. L.Thomas, “Morphological studies of PCP/MDI/BDO-based segmented polyurethanes.” Advances in Chemistry Series, 176, 31-52. (1979)
    6. E. W. McAllister, L. C. Carey, P. G. Brady, R. Heller and S. G. Kovacs, “The role of polymeric surface smoothness of biliary stents in bacterial adherence, biofilm deposition and stent occlusion.” Gastrointesinal Endoscopy, 39, 422-25. (1993)
    7. A. Takahara, A. Z. Okkema and S. L. Cooper, “ Effect of surface hydrophilicity on ex vivo blood compatibility of segmented polyurethanes.” Biomaterials, 12, 324-34. (1991)
    8. A. Voight, R. Becher and E. Donath, “Streaming current measurements to estimate surface conduction and electric double layer structure of biomaterials.” Journal of Biomedical Materials Research, 18, 317-20. (1984)
    9. M. D. Lelah, J. A. Pierce, L. K. Lambrecht and S. L. Cooper, “Polyetherurethane ionomers: Surface property/ex vivo blood compatibility relationships” Journal of Colloid and Interface Science, 104, 422-39. (1985)
    10. H. L. Nossel, G. D. Wilner and E. C. Leroy, “Importance of polar groups for initiating blood coagulation and aggregating platelets.” Nature, 221, 75-76. (1969)
    11. C. P. Sharma and G. Joseph, “Fibrinogen / platelet interaction with PGI2 analog-heparin immobilized albuminated polyurethane.” Polymeric Materials Science and Engineering, 53, 423-25. (1985)
    12. C. H. Bamford, I. P. Middleton, Y. Satake and K. G. Al-Lamee, “Grafting and attachment of anti-platelet agent to poly (ether-urethanes).” Polymer Preprints, 25, 27-28. (1984)
    13. V. I. Seavastianov and O. V. Laksina, “Adsorption desorption processes of proteins at solid blood interfaces.” Journal of Colloid and Interface Science, 112, 279-89. (1986)
    14. Y. Imanish, Y Lto, L.-S. Liu and M. Kajihara, “Design and synthesis of biocompatible polymeric materials.“ Journal of Macromolecular Science. Part A. Chemistry, 25, 555-70. (1988)
    15. Y. Ito, M. Sisido and Y. Imanishi, “ Synthesis and antithrombogenicity of anionic polyurethanes and heparin-bound polyurethanes.” Journal of Biomedical Materials Research, 20, 1157-77. (1986)
    16. R. B. Michael, P. Z. Nicholas, P. R. Steren, H. Anne and M. A. James, “Protein adsorption onto poly(ether-urethane ureas) containing Methacrol 2138F: A surface-active amphilphilic additive.” Journal of Biomedical Materials Research, 27, 255-67. (1993)
    17. T. R. Hesketh, J. W. C. Van Bogaart and S. L. Cooper, “Differential scanning calorimetry analysis of morphological changes in segmented elastomers.” Polymer Engineering and Science, 20, 190-97. (1980)
    18. T. A. Speckhard, K. K. S. Hwang, C. Z. Yang, W. R. Laupan and S. L. Cooper, “Properties of segmented polyurethane zwitterionomer elastomers.” Journal of Macromolecular Science. B, Physics, 23, 175-99. (1984)
    19. B. K. Kim and Y. M. Lee, “Polyurethane ionomers from cycloaliphatic diiscoyanate and polytetramethylene glycol.” Journal of Macromolecular Science. Part A, Pure and Applied Chemistry, 29, 1207-21. (1992)
    20. 譚健民 編著, “家庭醫學:消化系統”, 光復出版社. (1995)
    21. 陳得源、魏秀娟編譯, “胃腸生理學”, 合記出版社. (1984)
    22. 侯瑞城 編著, “醫護病理學” ,華杏出版社. (1990)
    23. 陳景德 編著, “肝膽疾病學” ,嘉洲出版社. (1974)
    24. 龜田治男著, “膽結石與膽囊炎”,武陵出版社。
    25. 譚健民 著, “膽結石”, 書泉出版社. (1999)
    26. J. Lammer, Friedrich Winkelbauer, Manfred Kontrus, and Siehfried Thurnher, “Plastic versus metallic biliary endoprostheses.” Seminars in interventional radiology, 13, 253-61. (1996)
    27. T. Rösch, “Metal stents for benign and malignant bile duct strictures stents.” Endoscopy, 30, A247-52. (1998)
    28. A. M. van Berket, C. Boland, W. K. Redekop, J. J. G. H. M. Bergman, A. K. Groen, G. N. J. Tytgat, and K. Huibregtse, “A prospective randomized trial of Teflon versus polyethylene stents for distal malignant biliary obstruction.” Endoscopy, 30, 681-86. (1998)
    29. J. W. C. Leung, T. K. W. Ling and J. L. S. Kung, “The role of bacteria in the blockage of biliary stent.” Gastrointestinal endoscopy, 34, 19-22. (1988)
    30. C. Moesch, D. Sautereau, F. Cessot, P. Berry, M. Mounier, A. Gainant and B. Pillegand, “Physicochemical and bacteriological analysis of the contents of occluded biliary endoprostheses.” Hepatology, 14, 1142-46. (1991)
    31. J. M. Smit, M. M. Out and A. K. Groen, “A placebo-controlled study on the efficacy of aspirin and doxycycline in preventing clogging of biliary endoprosthesis.” Gastrointestinal endoscopy, 35, 485-89. (1989)
    32. Brenda J. Hoffman, John T. Cunningham, William H. Marsh, John J. O’Brien, and Jerry Watson, “An in vitro comparison of biofilm formation on various biliary stent materials.” Gastrointestinal endoscopy, 40, 581-83. (1994)
    33. J. Y. Sung, E. A. Shaffer, K. Lam, I. Rususka, and J. W. Costerton, “Hydrophobic bile salt inhibits bacterial adhesion on biliary stent material.” Digestive diseases and sciences, 39, 999-1006. (1994)
    34. J. W. C. Leung, G. T. C. Lau, J. J. Y. Sung, J. W. Costerton, “Decreased bacterial adherence to silver-coated stent material: an in vitro study.” Gastrointestinal endoscopy, 38, 338-40. (1992)
    35. A. Speer, P. B. Cotton and K. MacRea, “Endoscopic management of malignant biliary obstruction: stent of 10 French gauge are preferable to stent of 8 French gauge.” Gastrointestinal endoscopy, 34, 412-17. (1988)
    36. P. P. L. O. Coene, A. K. Greon, J. Cheng, M. M. J. Out, G. N. J. Tytgat and K. Huibregtse, “Clogging of biliary endoprosthesis: a new perspective.” Gut, 31, 913-17. (1990)
    37. D.W. Hay, M.C. Carey. Chemical species of lipids in bile. Hepatology, 12, 6S-12S. (1990)
    38. A. Reuben. Biliary proteins. Hepatology, 4, 46S-50S. (1984)
    39. Y.C. Keulemans, K.S. Mok. L.T. de Wit, D.J. Gouma, A.K. Groen. “Hepatic bile versus gallbladder bile: a composition of protein and lipid concentration and composition in cholesterol gallstone patients.” Hepatology, 28, 11-6. (1998)
    40. B. Jansen, L. P. Goodman and D. Ruiten, “Bacterial adherence to hydrophilic polymer-coated polyurethane stents.” Gastrointesinal Endoscopy, 39, 670-73. (1993)
    41. Y. X. Hai, M. R. Nagarajan, C. Li, P. E. Gibos and S. L. Cooper. “Poly (chloropropylmethyl-dimethylsiloxane)-polyurethane elastomers-synthesis and properties of segmented copolymers and related zwitterionomers”, J. Polym. Phys., 24,268-281 (1986)
    42. A. Z. Okkma and S. L. Cooper, “Effect of carboxylate and/or sulphonate ion incorporation on the physical and blood-contacting properties of a polyetherurethane.” Biomaterials, 12, 668-77 (1991)
    43. J. H. Silver, J. W. Marchant and S. L. Cooper, “Effect of polyol type on the physical properties and thrombogenicity of sulfonate-containing polyurethanes.” Journal of biomedical materials research, 27, 1443-48. (1993)
    44. R.G. Flemming, R.A. Proctor, S.L. Cooper. “Bacterial adhesion to functionalized polyurethanes.” Journal of Biomaterials Science-Polymer Edition, 10, 679-697. (1999)
    45. R.G. Flemming, C.C. Capelli, S.L. Cooper, R.A. Proctor. Bacterial colonization of functionalized polyurethanes. Biomaterials, 21, 273-281. (2000)
    46. J. N. Baumgartner, C. Z. Yang, S. L. Cooper. Physical property analysis and bacterial adhesion on a series of phosphonated polyurethanes. Biomaterials, 18, 831-837. (1997)
    47. Venkataramani Sriram, Gopalasamudram Narayanan, Rama Ganesh Jeevan, Ganga Radhakrishnan. Comparative studies on short-chain and long-chain crosslinking in polyurethane networks. Macromolecular chemistry and physics, 201, 2799-2804. (2000)
    48. J. A. Grapski, S. L. Cooper. Synthesis and characterization of non-leaching biocidal polyurethanes. Biomaterials, 22, 2239-2246. (2001)
    49. J. C. Tiller, C. J. Liao, K. Lewis, A. M. Klibanov. Designing surfaces that kill bacteria on contact. Applied biological sciences, 98, 5981-5985. (2001)
    50. J. C. Tiller, S. B. Lee, K. Lewis, A. M. Klibanov. Polymer surfaces derivatized with poly (vinyl-N-hexylpyridinium) kill airborne and waterborne bacteria. Biotechnology and bioengineering, 79, 465-471. (2002)
    51. I.W. Wang, J.M. Anderson, R.E. Marchant. Staphylococcus epidermidis adhesion to hydrophobic biomedical polymer is mediated by platelets. Journal of Infectious Diseases, 167, 329-336. (1993)
    52. I.W. Wang, J.M. Anderson, R.E. Marchant. Platelet-mediated adhesion of Staphylococcus epidermids to hydrophobic NHLBI reference polyethylene. Journal of Biomedical Materials Research, 27, 1119-1128. (1993)
    53. K. Merritt, A. Gaind, J.M. Anderson. Detection of bacterial adherence on biomedical polymers, Journal of Biomedical Materials Research, 39, 415-22. (1998)
    54. I.W. Wang, J.M. Anderson, M.R. Jacobs, R.E. Marchant. Adhesion of Staphylococcus epidermidis to biomedical polymers: contributions of surface thermodynamics and hemodynamic shear conditions. Journal of Biomedical Materials Research, 29, 485-493. (1995)
    55. S. Sapatnekar, K.M. Kieswetter, K. Merritt, J.M. Anderson, L. Cahalan, M. Verhoeven, M. Hendriks, B. Fouache, P. Cahalan. Blood-biomaterial interaction in a flow system in presence of bacteria: effect of protein adsorption. Journal of Biomedical Materials Research, 29, 247-256. (1995)
    56. J.M. Higashi, I.W. Wang, D.M. Shlaes, J.M. Anderson, R.E. Marchant. Adhesion of Staphylococcus epidermids and transposon mutant strains to hydrophobic polyethylene. Journal of Biomedical Materials Research, 39, 341-350. (1998)
    57. M.S. Shive, S.M. Hasan, J.M. Anderson. Shear stress effects on bacterial adhesion, leukocyte adhesion, and leukocyte oxidative capacity on a polyurethane, Journal of Biomedical Materials Research, 46, 511-519. (1999)
    58. P.E. Vaudaux, P. Francois, R.A. Proctor, D. McDevitt, T.J. Foster, R.M. Albrecht, D.P. Lew, H. Wabers, S.L. Cooper. Use of adhesion-defective mutants of Staphylococcus aureus to define the role of specific plasma proteins in promoting bacterial adhesion to canine arteriovenous shunts. Infection & Immunity, 63, 585-590. (1995)
    59. J.N. Baumgartner, S.L. Cooper. Bacterial adhesion on polyurethane surface conditioned with thrombus components. ASAIO Journal, 42, M476-479. (1996)
    60. J.A. Nagel, R.B. Dickinson, S.L. Cooper. Bacterial adhesion to polyurethane surface in the presence of pre-adsorbed high molecular weight kininogen. Journal of Biomaterials Science, Polymer Edition, 7, 769-780. (1996)
    61. R.B. Dickinson, J.A. Nagel, R.A. Proctor, S.L. Cooper. “Quantitative comparison of shear-dependent Staphlococcus aureus adhesion to three polyurethane ionomer analogs with distinct surface properties." Journal of Biomedical Materials Research, 36, 152-162. (1997)
    62. J.N. Baumgartner, S.L. Cooper. “Influence of thrombus components in mediating staphylococcus aureus adhesion to polyurethane surfaces.” Journal of Biomedical Materials Research, 40, 660-670. (1998)
    63. L. Shi, R Ardehali, K.D. Caldwell, P. Valint. “Mucin coating on polymeric material surfaces to suppress bacterial adhesion.” Colloids and Surfaces B-Biointerfaces, 17,229-239. (2000)
    64. I.A. Rojas, J.B. Slun, D.W. Grainger. Polyurethane coatings release bioactive antibodies to reduce bacterial adhesion. Journal of Controlled Release, 63, 175-189. (2000)
    65. W.G. Pitt. K. Park, S. L. Cooper. Sequential protein adsorption and thrombus deposition on polymeric biomaterials. Journal of colloid and Interface science, 111,343-362. (1986)
    66. B.R. Young, W.G. Pitt, S.L. Cooper. Protein adsorption on polymeric biomaterials I. Adsorption isotherms. Journal of colloid and Interface science, 124,28-43. (1988)
    67. B.R. Young, W.G. Pitt, S.L. Cooper. Protein adsorption on polymeric biomaterials II. Adsorption kinetics. Journal of colloid and Interface science, 125,28-43. (1988)

    下載圖示 校內:立即公開
    校外:2003-07-29公開
    QR CODE