| 研究生: |
莫翔宇 Mo, Hsaing-Yu |
|---|---|
| 論文名稱: |
雙相磷酸鈣/硫酸鈣複合骨水泥性質之研究 Investigation of Properties of Biphasic Calcium Phosphate/ Calcium Sulfate Composite Bone Cement |
| 指導教授: |
陳瑾惠
Chern Lin, Jiin-Huey 朱建平 Ju, Chien-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 磷酸鈣 、硫酸鈣 、骨水泥 |
| 外文關鍵詞: | Calcium Phosphate, calcium sulfate, bone cement |
| 相關次數: | 點閱:97 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
磷酸鈣骨水泥具有優良的生物相容性與適當的機械強度,並具有骨傳導性,但在人體內吸收速率相當慢使得骨細胞不易取代;而硫酸鈣在體內溶解速率快,溶解的同時釋出鈣離子,鈣離子的釋出使得材料具有誘骨性,且磷酸鈣也具有良好的生物相容性;因此磷酸鈣和硫酸鈣混合後,利用硫酸鈣快速被吸收當作製造骨基質原料及產生孔洞效果的特性,有利於新生骨長入。
對於SW4P跟SW3P的第一個探討的為崩解性質跟生物相容性。第二部分為測試其可應用範圍的性質。而第三部分為浸泡在SBF中長時間跟短時間,以進行各項性質的探討。
SW4P with 6XL1 跟 SW3P with 6XL2為兩個主要研究的條件,其浸泡SBF一天後的強度分別為18和17MPa,有適當的工作時間和硬化時間以及注射性質。抗壓強度當浸泡的時間增加會逐漸的下降,但卻使得孔隙率的上升,af的孔隙率可達到60%左右。而且在ISO 10993-5規範下所進行的細胞毒性測試,也表現了良好的生物相容性。
Calcium phosphate cement has excellent biocompatibility and adequate mechanical properties. Also, It has osteoconductivity but has slow resorption in the human body. Calcium sulfate has excellent biocompatibility and fast resorption in human body. When calcium sulfate dissolved, the calcium ions were released which provided osteoinductive property. The resorbed calcium sulfate can be used as materials of bone matrix. Upon degrading it also generates porosities which makes the newly formed bone integrates into the implant along with the pore and contacts directly with crystals of calcium phosphate.
The first part of experiment is the property of SW4P and SW3P in view of the injectibility and compatibility. The second part goes with the different concentration of X and the different liquid to powder ratio. The third part of experiment is to study the mechanical properties, physical properties and mechanism of composite soaking in SBF with short time and long time .
SW4P with 6XL1 and SW3P with 6XL2 soaking in SBF one day have compressive strength about 18 MPa. They also have adequate working/setting time and injectability. The porosity increase with increasing soaking time. Resulting the compressive strength decreases quickly but also leads the composites to around 60% of porosity. Furthermore, the results of cytotoxicity (ISO 10993-5) show good biocompatibility.
Albee F, Morrison H. Studies in bone growth.Annals of Surg 1920;71:32-38.
Amathieu L. and Boistelle R., Crystallization Kinetics of Gypsum from Dense Suspension of Hemihydrate in Water, Journal of Crystal Growth,1988;88: 184.
Andries S. Coetzee, MMed (OLR). Regeneration of Bone in the Presence of Calcium Sulfate. Arch Otolaryngol. Vol 106, July 1980
Block M.S, Kent T.N, Guerra. Implants in dentistry. W.B. Saunders Company,1997
Bohner M., Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury Int J Care Injured 2000;31:S-D37-47.
Bohner M. and Baumgart M., Theoretical Model to Determine the Effects of Geometrical Factors on the Resorption of Calcium Phosphate Bone Substitutes, Biomaterials, 2004;25[17] 3569–3582.
Bohner M., Gbureck U., Barralet J.E. Technological issues for the development of more efficient calcium phosphate bone cements: A critical assessment Biomaterials, 2005; 26 6423–6429
Bohner M., New hydraulic cements based on α-tricalcium phosphate – calcium sulfate dihydrate mixtures; Biomaterials 2004;25 741–749.
Breed AL., Experimental production of vascular hypotension, and bone marrow and fat embolism with methylmethacrylate cement. Traumatic hypertension of bone. Clin Orthop, 1974; 102: 227-44.
Brown WE, Chow LC., A new calcium phosphate setting cement. J Dent Res Abs 1983;207:62-672.
Brown WE, Chow LC., Combinations of sparingly soluble calcium phosphates in slurries and paste as mineralizers and cements. US Patent 1986, No. 4612053.
Brown WE, Chow LC., Dental resptorative cement pastes. US. Patent 1985, No. 4518430.
Brown WE, Chow LC., Singular points in the chemistry of teeth. J Dent. Res 1975;54:74.
Chow LC., Calcium phosphate materials: reactor response ; Adv Dent Res 2(1):181-184, August, 1988
Chow LC, Takagi S., Calcium phosphate hydroxyapatite precursor and methosd for making and using the same. US Patent 1996, No.5542973.
Chow LC. Development of self-setting calcium phosphate cement. The Centennial Memorial Issue 1991;99(10):954-964.
Chow L C, J. Ceram. Soc. Japan Int. Edn. 99 (1992) 927.
Chow LC. Next generation calcium phosphate-based biomaterials. Dent Mater J. Author manuscript; available in PMC 2009 August 5.
Clemson Advisory Board for Biomaterials “Definition of the word biomaterial”, The 6th annal international biomaterial symposium. April 1974:20-24.
David F. Williams. On the nature of biomaterials. Biomaterials 30 (2009) 5897–5909
Costantino PD, Friedman CD: Synthetic bone graft substitutes. Otolaryngol Clin North Am 1994;27:1037-1074.
Driskell TD, Heller AL, Koenigs J. Dental treatments. US Patent 1975, No. 3913229.
de Groot K. Medical applications of calcium phosphate bioceramics. The centennial memorial issue of the ceramic society of Japan 1991;99:943-953.
Elena F. Burguera, Hockin H. K. Xu, Michael D. Weir. Injectable and
Rapid-Setting Calcium Phosphate Bone Cementwith Dicalcium Phosphate Dihydrate. J Biomed Mater Res Part B: Appl. Biomater 77B:126–134, 2006
Fernaâ ndez* E, Gil FJ, Ginebra MP, Driessens FCM, Planell JA. Calcium phosphate bone cements for clinical applications, Journal of Materials Science: Materials in Medicine 10 (1999) 169±183
Fukase Y, EANES' E.D, TAKAGI3 S., CHOW L.C, and BROWN W.E.; Setting Reactions and Compressive Strengths of Calcium Phosphate Cements;J Dent Res 69(12):1852-1856, December, 1990.
Getter L, Bhaskar S, Cutright D, Perez B, Brady J, Driskell T, O’Hara M. Three biodegradable calcium phosphate slurry implants in bone. J Oral Surg 1972;30:263-268.
Hench LL, Bioceramics: from concept to clinic. J Am Ceram Soc 1991;74:1487-1510.
Hulbert SF, Hench LL, Forbers D, Bowman LS. History of bioceramics. Ceram Internat. 1982;8:131-140.
Jarcho M. CaP ceramics as hard tissue prosthetics. Clin Orthop 1981;157:259-78.
Jarcho M. Hydroxyapatite synthesis and characterization in dense polycrystalline forms. J Mater Sci 1976;11:2027-35.
Jarcho M, Kay J, Gumaer K, Doremus R, Drobeck H. Tissue, cellular and subcellular events at a bone-ceramic hydroxyapatite interface. J Bioengineering 1977;1:79-92.
Jonck LM, Grobbelaar CJ. "The biological compatibility of glass ionomer cement in joint replacement." Clin. Mater. , 1989; 4: 85-107.
Kokubo T. "Recent progress in glass-based materials for biomedical applications." The Centennial Memorial Issue of The Ceramic Society of Japan 99: 965-973, 1991.
Köster K, Karbe E, Kramer H, Heide H, König R. Experimenteller knochenersatz durch resorbierbare calcium phosphate keramik. Langenbecks Arch Chir 1976;341:77-86.
Lewis K. N, Thomas M. V, Puleo D. A.; Mechanical and degradation behavior of polymer-calcium sulfate composites. J Mater Sci: Mater Med 2006;17: 531–537.
Lewry A.J. and J. Williamsoon, "The setting of gypsum plaster partIII the effect of additives and impurities."J of materials science. Vol 29, p6085~6090, 1994.
Lijun Wang and George H. Nancollas. Calcium Orthophosphates: Crystallization and Dissolution. Chem. Rev. 2008, 108, 4628–4669
Mark V. Thomas, David A. Pule. Calcium Sulfate: Properties and Clinical Applications. J Biomed Mater Res Part B: Appl Biomater 88B: 597–610, 2009
Monma H, Goto M and Kohmura T , Gypsum & Lime, 1984 No.188, 11-16
Moore W.R, Graves S.E, Bain G.I. Synthetic Bone Graft Substitutes. ANZ J. Surg 71: 354-361,2001.
Myerson A.S. Handbook of Industrial Crystallization Butterworth Heinemann Series, Chemical Engineering. USA, 1993.
Nilsson M., Ferna´ndez E. Sarda S. Lidgren 1L., Planell J.A. "Characterization of a novel calcium phosphate/sulphate bone cement." J Biomed Mater Res 61: 600–607, 2002.
Nilsson M., Wielanek L., J.S. Wang, K. E. Tanner, L. Lidgren. "Factors Influencing the Compressive Strength of an Injectable Calcium Sulfate-Hydroxyapatite Cement." Journal of Materials Science: Materials in Medicine 14: 399-404, 2003.
Park JB. Biomaterials, An Introduction. Plenum Press. New York, 1979.
Park JB. Biomaterials science and engineering. Plenum Press, New York and London, 1985.
Park JB, Bronzino JD. Biomaterials principles and applications. CRC Press, New York, 2003.
Park JB, Lakes RS. Biomaterials: an introduction. Plenum Press, 2nd ed., New York, 1992.
Peelen J, Rejda B, Vermeiden J, de Groot K. Sintered tricalcium phosphate as bioceramic. Science of ceramics 1977;9:226-236.
R Sivakumar. On the relevance and requirements of biomaterials.
Bull. Master. Sci., Vol. 22, No. 3, pp. 647-655
Ray R, Degge J, Gloyd P, Mooney G. Bone regeneration. J Bone Joint Surg 1952;34A:638-647.
Rateitschak KH, Wolf HF. Color Atlas of Dental Medicine. Thieme Medical Publishers, 1995.
Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. Biomaterials science. Academic Press, California, 1996;222-223.
Roy D, Linnehan S. Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature 1974;247:220-222.
Sergey V. Dorozhkin. Calcium Orthophosphates as Bioceramics: State of the Art. J. Funct. Biomater. 2010, 1, 22-107
Sergey V. Dorozhkin. Calcium orthophosphate cements for biomedical application. J Mater Sci (2008) 43:3028–3057
Sergey V. Dorozhkin. Calcium orthophosphates. J Mater Sci (2007) 42:1061–1095
Silver FH. Biomaterials, medical devices, and tissue engineering: an integrated approach. Chapman & Hall, New York, 1994.
Soballe K. Hydroxyapatite ceramic coating for bone implant fixation. ACTA Orthopaed Scandin Supplem 1993;64:1-58.
Song H.Y, Esfakur Rahman A.H.M., Lee B.T. Fabrication of calcium phosphate-calcium sulfate injectable bone substitute using chitosan and citric acid, J Mater Sci: Mater Med 20:935–941,2009.
Takag i S, Chow LC, Ishikawa K. Formation of hydroxyapatite in new calcium phosphate cements. Biomaterials 19 (1998) 1593Ð1599
Vereecke G, Lemaitre J. Calculation of the solubility diagrams in the system Ca(OH)2-H3PO4-KOH-HNO3-CO3-H2O. J Cryst Growth 1990;104:820-832.
Verlaan JJ, Oner FC, Slootweg PJ, Verbout AJ, Dhert WJ Histologic changes after vertebroplasty. J Bone Joint Surg [Am] 86(A):1230-1238, 2004.
WAN KHARTINI WAN KHODIR, ROSLINDA SHAMSUDIN, ABDUL RAZAK DAUD & YUSOF ABDULLAH. InjectableHydroxyapatite -β -Tricalcium Phosphate –Calcium Sulphate Biocement. Sains Malaysiana . 34(2)(2005): 77-80
Ying. Nanocrystalline apatites and composite prostheses incorporating them, and method for their production ,US patent 6013591, 2000.
The Orthopedis Industry Annual Report: 2009-2010
The U.S. Market for Medical Technology Opportunities and Challenges for Swiss Companies.
張炳龍, ROSS 組織學, 合記圖書出版社, 147-158, 1991
梁智仁,“骨質疏鬆致骨折專治生物材料的研製與市場化.”京港學術交流第五十四期, 2002
汪建民, 材料分析, 中國材料科學學會, 1998