簡易檢索 / 詳目顯示

研究生: 陳士程
Chen, Shih-Cheng
論文名稱: 利用核磁共振技術研究窄贗能隙材料:CaxCo4Sb12與CeFe2Al10合金
NMR study of narrow pseudo-gap materials:CaxCo4Sb12 and CeFe2Al10 alloys
指導教授: 呂欽山
Lue, Chin-Shan
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 107
中文關鍵詞: 核磁共振窄能隙混成能隙
外文關鍵詞: NMR, narrow gap, hybridization gap
相關次數: 點閱:58下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於樣品的量測,如磁化率、比熱、電阻…等,量測所得到的實驗數據為主要為材料巨觀上的表現,實驗的結果往往會受到外在雜質或樣品本身的不純度影響而造成對樣品的些許誤判。為了避免不純度影響了實驗的精準度,在微觀量測上,NMR就是一個很好的量測技術。由於每個原子核有其共振吸收頻率,因此NMR可以針對欲觀測的原子核進行探討,進而由所得數據得知其所處週遭環境的物理。在本篇論文中,我們對二種不同的半金屬化合物系統- CaxCo4Sb12 (x=0, 0.05, 0.13, 0.2) 和CeFe2Al10,利用核磁共振(NMR)技術進行其物理性質的研究。
    第一部份為CaxCo4Sb12 (x=0, 0.05, 0.13, 0.2): 其母體CoSb3在熱電材料上有很大的潛力。藉由摻雜外來原子可增加聲子散射率,進而降低熱導率,提升ZT值。在我們的NMR研究上發現,對於低濃度(x≤0.13) Ca原子的摻雜下,我們的樣品表現出有一能隙存在的半導體特性。而在高濃度(x=0.2)摻雜下,樣品呈現出半金屬的行為。
    第二部份為CeFe2Al10: 一般主要認為,f電子與傳導電子的交互作用,為稀土族化合物有著特殊物理性質的主要原因。近年來,CeFe2Al10也發現有著混和價數而引起研究上的興趣。而在f電子和傳導電子的作用下,往往會使得在費米面附近產生能隙,在我們NMR的研究結果中,認為在CeFe2Al10化合物中的能隙應歸為”贗能隙”而不是真正的能隙;這結果也和低溫比熱實驗結果一致。

    As to measuring compounds such as magnetic susceptibility, specific heart, electrical resistivity, etc., these mainly focus on macroscopic behaviors for materials. It is generally believed that bulk property measurements usually fail to yield reliable estimations if impurity phases and/or defects appear in the samples. In order to avoid the influence of impurity in sample, we carry out nuclear magnetic resonance (NMR) technique to gain insight into the features of compounds. Because each atomic nucleus has its resonance absorption frequency, this reason allows us to choose appropriate atomic nuclei to detect and derive information about physical feature of the materials from analyzing experimental data. In this thesis, we report result of NMR study on two different semimetallic systems: CaxCo4Sb12 (x=0, 0.05, 0.13, and 0.2) and CeFe2Al10.
    The first part is CaxCo4Sb12 (x=0, 0.05, 0.13, and 0.2): The host compound CoSb3 has great potential in thermoelectric property. It can reduce the thermal conductivity due to extra atoms in its voids, improving the thermoelectric performance further. In our NMR investigations, for low Ca (x≤0.13) concentrations our studied samples exhibit semiconducting characteristics with a trend of the reduction in the band gaps increasing the Ca content. For a higher Ca concentration (x=0.2), the NMR features can be described well in terms of a semimetallic response as the corresponding Fermi level falling within a pseudogap formed by nearby bands.
    The second part is CeFe2Al10: Generally, the variously complicated and fascinating magnetic properties for the rare-earth based intermetals are due to the hybridization of the local f-electrons with conduction electrons. Recently, CeFe2Al10 compound also has the mixed-valence characteristic to be noted. However, an energy gap near Fermi level will often be produced by interaction between f-electron and conduction electrons. In our NMR results, the gap in CeFe2Al10 should be characterized as a pseudogap with a finite number of carriers at the Fermi level. This experimental result also consists with that of the low-temperature specific-heat measurement.

    Content page 中文摘要 IV Abstract V 誌謝 VII List of Figures VIII List of Tables XIII Chapter 1. Introduction 1 Chapter 2. The Principles of NMR In Solids 3 2-1. Zeeman effect 3 2-2. Equations of motion 5 2-3. Spin Hamiltonian 9 2-4. Knight Shifts 10 2-5. Spin-Lattice relaxation rates 14 2-5-1. Introduce to Spin-Lattice relaxation rates 14 2-5-2. Formulas of Spin-lattice relaxation rates 15 2-5-3. Spin-Lattice relaxation rates for metals, semiconductors, and Semimetals 18 I. Metals 18 II. Semiconductors 19 III. Semimetals 20 2-6. Electric quadrupole effect 24 2-6-1. Introduce to quadrupole and electric field gradient (EFG) 24 2-6-2. Formulas of quadrupole effects 27 I. First-order quadrupole effect 28 II. Second-order quadrupole effect 29 Chapter 3. Experimental Instruments And Techniques 30 3-1. NMR signal 30 3-2. Dewar flask 31 3-3. Probe 34 3-4. Temperature controller 36 3-4-1. For temperature range from 77 K to 300 K 37 3-4-2. For temperature range from 4.2 K to 77 K 37 3-5. Measurements of T2 and T1 38 3-5-1. Spin-echo technique 39 3-5-2. Inverse and saturation comb techniques to measure T1 41 I. Inversion Recovery 41 II. Saturation Comb 44 Chapter 4. Experimental Details And Discussion 45 4-1. Evolution of the electronic structure in partially filled skutterudites: CaxCo4Sb12 45 4-1-1. Introduction 45 I. Skutterudite and filled-skutterudite structure 45 II. Motivation 48 4-1-2. Sample Preparation 48 I. The filling fraction limit 48 II. Sample procedure 49 III. The XRD patterns 50 4-1-3. NMR measurement 52 I. Powder pattern 53 A. Satellite lines 53 B. Central patterns 55 II. Knight shifts 58 III. Spin-lattice relation rates 61 4-1-4. Discussion 68 4-1-5. Conclusion 68 4-2. 27Al NMR study of the hybridization gap in CeFe2Al10 70 4-2-1. Introduction 70 I. General considerations of rare earth (RE) and 4f-electrons 70 II. Introduction to hybridization gap (Kondo-insulator) and mixed valence 70 III. Motivation 73 4-2-2. Preparation for CeFe2Al10 75 I. Sample procedure 75 II. Each Al atomic coordinate in the YbFe2Al10-type structure 78 4-2-3. NMR measurement 79 I. Powder patterns 79 A. Quadrupole interaction ( and ) 79 B. Sites identification 81 C. Central transition ( ) 82 II. Knight shifts 85 III. Spin-lattice relation rates 92 4-2-4. Conclusion 98 Chapter 5. Summary 99 References 101 List of Publications 107

    Reference

    [1] G. S. Nolas, D. T. Morelli, and T. M. Tritt, Annu. Rev. Mater. Sci. 29, 89 (1991).
    [2] W. Jeitschko and D. Braun, Acta Crystallogr. B33, 3401 (1977).
    [3] F. Bloch, Phys. Rev. 70, 460 (1946).
    [4] B. Bloembergen and T. J. Rowland, Acta. Met. 1, 731 (1953).
    [5] C. H. Towenes, C. Herring, and W. D. Knight, Phys. Rev. 77, 852 (1950).
    [6] R. Kubo and Y. J. Obata, J. Phys. Soc. Jpn. 11, 547 (1956).
    [7] A. M. Clogston, V. Jaccarino and Y. Yafet, Phys. Rev. 134, A650 (1964).
    [8] L. E. Orgel, J. Phys. Chem. Solids 21, 123 (1961).
    [9] W. D. Knight, Phys Rev. 76 (1949) 1259.
    [10] C. Kittel, Introduction to Solid State Physics, Eighth Edition, Chapter 11.
    [11] J. D. Jackson. Classical Electrodynamic, third edition.
    [12] DAS, T. P. and SONDHEIMER, E. H., Phil. Mag. 5, 529 (1960).
    [13] STEPHEN, M. J., Proc. Phys. Soc. (Lond.) 79, 987 (1962).
    [14] B. H. Bransden and C. J. Joachain, Introduction to Quantum Mechanics, Ch.9.
    [15] Y. Obata, J. Phys. Soc. Jpn. 18, 1020 (1963).
    [16] Y. Obata, J. Phys. Soc. Jpn. 19, 2348 (1964).
    [17] Y. Yafet and V. Jaccarino, Phys. Rev. 133, A1630 (1964).
    [18] A. Narath, Phys. Rev. 162, 320 (1967).
    [19] T. Asada, K. Terakura, and T. Jarlborg, J. Phys. F 11, 1847 (1981).
    [20] T. Asada and K. Terakura, J. Phys. F 12, 1387 (1982).
    [21] B. Nowak, Solid State Nuclear magnetic Resonance 21, 53-60 (2002).
    [22] H. Ebert, H. Winter, and J. Voitländer, J. Phys. F 14, 2433 (1984).
    [23] J. Korringa, Physica 16, 601 (1950).
    [24] W. H. Jones, Jr., T. P. Graham, and R. G. Barnes, Phys. Rev. 132, 1898 (1963).
    [25] N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev. 73, 679-746, (1948).
    [26] E. L. Hahn, Phys. Rev. 80, 580, (1950).
    [27] R. R. Ernst and W. A. Anderson, Application of Fourier Transform Spectroscopy to Magnetic Resonance Rev. Sci. Inst. 37, 93-102, (1966)
    [28] J. W. Sharp, E. C. Jones, R. K. Williams, P. M. Martin, and B. C. Sales, J. Appl.
    Phys. 78, 1013 (1995).
    [29] B. C. Sales, D. Mandrus, R. K. Williams. Since 272, 1325 (1996).
    [30] J. S. Dyck, W. Chen, C. Uher, L. Chen, X. Tang, and T. Hirai, J. Appl. Phys. 91,
    3698 (2002).
    [31] D. T. Morelli, G. P. Meisner, B. Chen, S. Hu, and C. Uher, Phys. Rev. B 56 7376
    (1997).
    [32] G. A. Slack, CRC Handbook of Thermoelectrics, edited by D. M. Rowe (Chemical Rubber, Boca Raton, FL, 1995), Chap. 34, p407.
    [33] C. S. Lue, S. M. Huang, C. N. Kuo, F-T Huang and M-W Chu, New J. Phys. 10 083029 (2008).
    [34] C. S. Lue, S. C. Chen, Phys. Rev. B 79 125108 (2009).
    [35] M. Puyet, B. Lenoir, A. Dauscher, P. Pecheur, C. Belouard, J. tobola, and J. Hejtmanek, Phys. Rev. B 73, 035126 (2006).
    [36] D. J. Singh and I. I. Mazin, Phys. Rev. B 56, R1650 (1997)
    [37] G. P. Mesiner, D. T. Morelli, S. Hu, J. Yang, and C. Uher, Phys. Rev. Lett. 80 3551 (1998).
    [38] L. Bertini and C. Gatti, J. Chem . Phys. 121, 8983 (2004).
    [39] L. Chaput, P. Pecheur, J. Tobola, and H. Scherrer, Phys. Rev. B 72, 085126 (2005).
    [40] K. Mangersnes, O. M. Lovvik, andO. Prytz, New J. Phys. 10, 053004 (2008).
    [41] C. S. Lue, T. H. Su, B. X. Xie, and C. Cheng, Phys. Rev. B 74 094101 (2006).
    [42] Lidong Chen, 21st International Conference on Thermoelectronics (2002).
    [43] M. Puyet, B. Lenoir, A. Dauscher, P. Weisbecker, and S. J. Clarke, Journal of Solid State Chemistry 177, 2138-2143 (2004).
    [44] C. S. Lue, Y. T. Lin, and C. N. Kuo, Phys. Rev. B 75, 075113 (2007).
    [45] A. R. Denton and N.W. Ashcroft, Phys. Rev. A 43, 3161 (1991).
    [46] M. H. Cohen and F. Reif , in Solid State Physics, edited by f. Seitz and D.
    Turnbull (Academic, New York, 1957), Vol. 5, p.311.
    [47] Metallic shifts in NMR, edited by G. C. Cater, L. H. Bennett, and D. J. Kahan (Pergamon, Oxford, 1977).
    [48] M. Puyet, B. Lenoir, A. Dauscher, P. Pécheur, C. Bellouard, J. Tobola, and J. Hejtmanek, Phys. Rev. B 73, 035126 (2006).
    [49] C. S. Lue and Joseph H. Ross, Jr, Phys. Rev. B 58, 9763 (1998).
    [50] C. S. Lue and Joseph H. Ross, Jr, Phys. Rev. B 63, 054420 (2001).
    [51] N. Albert, Phys. Rev. 162 320 (1967).
    [52] N. Bloembergen, Physica (Amsterdam) 20 1130 (1954); Dieter Wolf, Spin Temperature and Nuclear-spin Relaxation in Matter (Clarendon, Oxford, 1979).
    [53] K. Yoshimura, M. Mekata, M. Takigawa, Y. Takahashi, and H. Yasuoka, Phys. Rev. B 37, 3593 (1988).
    [54] G. Aeppli and Z. Fisk, Comments Condens. Matter Phys. 16, 155 (1992) and
    references therein.
    [55] P. S. Riseborough, Adv. Phys. 49, 257 (2000) and references therein.
    [56] Z. Fisk, J. L. Sarrao, J. D. Thompson, D. Mandrus, M. F. Hundley, A. Miglori, B. Bucher, Z. Schlesinger, G. Aeppli, E. Bucher, J. F. DiTusa, C. S. Oglesby, H-r. Ott, P. C. Canfield, and S. E. Brown, Physica B 206-207, 798 (1995).
    [57] M. Takigawa, H. Yasuoka, Y. Kitaoka, T. Tanaka, H. Nozaki, and Y. Ishizawa, J. Phys. Soc. Jpn. 50, 2525-2532 (1981).
    [58] J. W. Allen, B. Batlogg, and P. Wachter, Phys. Rev. B 20,4807 (1979).
    [59] M. Kasaya, F. Iga, K. Negishi, S. Nakai, and T. Kasuya, J. Magn. Magn. Mater. 31-34, 437 (1983).
    [60] M. F. Hundley, P. C. Canfield, J. D. Thompson, Z. Fisk, and J. M. Lawrence, Phys. Rev. B 42, 6842 (1990).
    [61] T. Takabatake, F. Teshima, H. Fujii, S. Nishigori, T. Suzuki, T. Fujita, Y. Yamaguchi, J. Sakurai, and D. Jaccard, Phys. Rev. B 41, 9607 (1990).
    [62] R. A. Neifeld, M. Croft, T. Mihalisin, C. U. Segre, M. Madigan, M. S. Torikachvili, M. B. Maple, and L. E. DeLong, Phys. Rev. B 32, 6928 (1985).
    [63] M. Croft, R. Neifeld, C. U. Segre, S. Raacn, and R.D. Parks, Phys. Rev. B 30, 4164 (1984).
    [64] Y. Muro. M. Motoya. Y. Saiga, and T. Takabatake, J. Phys. Soc. Jpn. 78, 083707 (2009).
    [65] C. S. Lue and J. H. Ross, Jr., Phys. Rev. B 58, 9763 (1998)
    [66] C. S. Lue , C. F. Chen, F. K . Chiang, and M. W. Chu, Phys. Rev. B 80, 174202 (2009).
    [67] S. Niemann and W. Jeitschko, Z. Kristallogr. 210, 338 (1995).
    [68] V. M. T. Thiede, T. Ebel, and W. Jeitschko, J. Master. Chem. 8, 125 (1998).
    [69] T. Nishioka, Y. Kawamura, T. Takesaka, R. Kobayashi, H. kato, M. Matsumura. K. Kodama, K. Matsubayashi, and Y. Uwatoko, J. Phys. Soc. Jpn. 78, 123705 (2009).
    [70] M. E. Smith, appl. Magn. Reson. 4, 1 (1993).
    [71] C. S. Lue, T. H. Su, B. X. Xie, S. K. Chen, J. L. Macmanus-Driscoll, Y. K. Kuo, and H. D. Yang, Phys. Rev. B 73, 214505 (2006).
    [72] C. S. Lue, S. C. Chen, Phys. Rev. B 79, 125108 (2009).
    [73] M. Matsumura, Y. Kawamura, S. Edamoto, T. Takesaka, H. Kato, T. Nishioka, Y. Tokunagai, S. Kambei, and H. Yasuokai, J. Phys. Soc. Jpn. 78, 123713 (2009).
    [74] A. M. Clogston, V. Jaccarino, and Y. Yafet, Phys. Rev. 134, A650 (1964).
    [75] V. Jaccarino, G. K . Wertheim, J. H. Wernick, L. R. Walker, and S. Arajs, Phys. Rev. 160, 476 (1967).
    [76] M. Takigawa, H. Yasuoka, Y. Kitaoka, T. Tanaka, H. Nozaki, and Y. Ishizawa, J. Phys. Soc. Jpn. 50, No.8, 2525 (1981).
    [77] C. Petrovic, Y. Lee, T. Vogt, N. Dj. Lazarov, S. L. Bud’so, and P. C. Canfield, Phys. B 72, 045103 (2005).
    [78] T. Takesaka, K. Oe, R. Kobayashi, Y. Kawamura, T. Nishioka, H. Kato, M. Matsumura, and K. Kodama, J. Phys.: Conf. Ser. 200, 012201 (2010)
    [79] R. E. J. Sears, Phys. Rev. B 22, 1135 (1980).
    [80] C. S. Lue, B. X. Xie, S. N. Horng, J. H. Su, and J. Y. Lin, Phys. Rev. B 71, 195104 (2005).
    [81] Y. Kawasaki, M. Izumi, y. Kishimoto, T. Ohno, H. Tou, Y. Inaoka, M. Sera, K. Shigetoh, and T. Takabatake, Phys. Rev. B 75, 094410 (2007).
    [82] N. Albert, Phys. Rev. 162 320 (1967).
    [83] T, Caldwell, A. P. Reyes. W. G. Moulton, P. L. Kuhns, M. J. R. Hoch, P. Schlottmann, and Z. Fisk, Phys. Rev. B 75, 075106 (2007).
    [84] M. Kasaya, F. Iga, M. Takigawa, and T. Kasuya, J. Magn, Magn. Mater. 47-48, 429 (1985).
    [85] R. Sarkar, K. Ghoshray, B. Bandyopadhyay, and A. Ghoshray, Phys. Rev. B 71, 104421 (2005).
    [86] A. P. Reyes, R. H. Heffner, P. C. Canfield, J. D. Thompson, and Z. Fisk, Phys. Rev. B 49 16321 (1994).
    [87] E. M. Bruning, M. Baenitz, A. A. Gippius, A. M. Strydom, F. Steglich, and R. E. Walstedt, J. Magn. Magn. Mater. 310, 393 (2007).
    [88] K.-i. Nakamura, Y. Kitaoka, K. Asayama, T. Takabatake, G. Nakamoto, H. Tanaka, and H. Fujii, Phys. Rev. B 53, 6385 (1996).
    [89] A. K. Rajarajan, A. Rabis, M. Baenitz, A. A. Gippius, E. N. Morozowa, J. A. Mydosh, and F. Steglich, Phys. Rev. B 76, 024424 (2007).
    [90] A. A. Gippius, M. Baenitz, A. K. Rajarajan, E. M. Bruening, K. Okhotnikov, R. Walstedt, A.Strydom, J. Mydosh, and F. Steglich, J. Phys.: Conf. Ser. 150, 042040 (2009).

    下載圖示 校內:2012-08-01公開
    校外:2012-08-01公開
    QR CODE