簡易檢索 / 詳目顯示

研究生: 侯幸怡
Hou, Sing-Yi
論文名稱: Acarviosyl Transferase酵素基因選殖、表現及活性測試
Cloning, Expression and Characterization of Acarviosyl Transferase
指導教授: 蕭世裕
Shaw, Shyh-Yu
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 65
中文關鍵詞: 醣祿錠轉醣酶大腸桿菌蛋白質表現
外文關鍵詞: Acarbose, Transferase, Escherichia coli, Protein expression
相關次數: 點閱:105下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 醣祿錠是一種阿爾發-葡萄糖甘酶的抑制劑,已被廣泛用來治療糖尿病患,ATase酵素(acarviosyl transferase)能轉換醣祿錠衍生物上的acarviosyl官能基,可以提高醣祿錠產率及純度,是量產醣祿錠所需之重要酵素。為了更方便地取得ATase酵素,我們從Actinoplanes sp.菌種中選殖出ATase酵素基因,並將其接進帶有SpA訊息序列和ZZ domain的載體,並在大腸桿菌表現含有protein A片段ZZ domain和ATase酵素之融合蛋白(ZZ-ATase),然後以IgG 管柱純化此融合蛋白。本研究更進一步利用薄層層析法(TLC,Thin Layer Chromatography)及高效能液相層析儀( HPLC,High Performance Liquid Chromatography )測定ZZ-ATase酵素之活性、最佳反應條件並測出其酵素動力學常數(和acarbose的Km為0.123 mM,Vmax為0.469 mM/hr)。另外,也改變實驗醣類,測試重組後的ATase酵素是否會廣泛地選擇受質而產生新的產物,結果顯示重組後的ATase酵素僅對某些醣類具有轉換acarviosyl官能基的活性。

    Acarbose is an inhibitor of α-glucosidase and has been widely used to treat patients with diabetes. Acarbose is a metabolite of Actinoplanes sp. and it can be obtained by microbial fermentation method. Acaviosyl transferase (ATase) is an enzyme that can hydrolyze and transfer the acarviosyl group of acarbose. It has been proposed that ATase may increase the yield and purity of acarbose. In order to evaluate the potential of using recombinant ATase for acarbose production, we have cloned the ATase gene from Actinoplanes sp. and expressed a fusion protein containing the N-terminus of protein A (ZZ domain) and the full length of ATase in E. coli. The fusion protein ZZ-ATase was purified to homogeneity by IgG affinity chromatography. The ATase activity of the fusion protein has been evaluated by thin layer chromatography and comfirmed by HPLC method more precisely. The parameters of enzyme kinetics measured by HPLC showd that the Km= 0.123 mM and Vmax is 0.469 mM/hr. We changed other substrates to see whether the ZZ-ATase has broad-acceptor activity. The result revealed that ZZ-ATase can only transfer acarviosyl unit to a few substrates such as salicin and cellobiose.

    中文摘要 Ⅰ 英文摘要 Ⅱ 目錄 Ⅲ 表目錄 Ⅳ 圖目錄 Ⅴ 壹、 前言 1 貳、 論文目的 6 參、 材料與方法 7 肆、 結果 17 伍、 討論 22 陸、 參考文獻 26

    1.陳文盛.(1998)線索. 天下文化出版社 台北.
    2.Truscheit E, Frommer B, Junge L, Mller D, Schmidt D, Wingender W. (1981) Chemistry and biochemistry of -glucosidase inhibitors. Angew. Chem. Int. Ed. 20:744.
    3.Frommer W, Puls W, Schaefer D, Schmidt D. (1975) Glycoside-hydrolase enzyme inhibitors. German patent DE 2064092 (US patent 3,876,766).
    4.Frommer W, Junge B, Mueller L, Schmidt D, Truscheit E (1979) Neue Enzyminhibitoren aus Mikroorganismen. Planta Med 35:195.
    5.Brayer GD, Sidhu G, Maurus R, Rydberg EH, Braun C, Wang Y, Nguyen NT, Overall CM, Withers SG. (2000) Subsite mapping of the human pancreatic α-amylase active site through structural, kinetic, and mutagenesis techniques. Biochemistry 39:4778.
    6.Truscheit E, Junge B, Mueller L, Puls W, Schmidt D. (1988) Microbial alpha-glucosidase inhibitors: chemistry, biochemistry and therapeutic potential. Prog Clin Biochem Med. 7:17.
    7.Vasselli JR, Haraczkiewicz E, Maggio CA, Greenwood MR. (1983) Effects of a glucosidase inhibitor (acarbose, BAY g 5421) on the development of obesity and food motivated behavior in Zucker (fafa) rats. Pharmacol Biochem Behav. 19:85.
    8.Lieber CS, Leo MA, Mak KM, Xu Y, Cao Q, Ren C, Ponomarenko A, DeCarli LM. (2004) Acarbose attenuates experimental non-alcoholic steatohepatitis. Biochem Biophys Res Commun. 315:699.
    9.Yamagishi S, Nakamura K, Inoue H. (2005) Acarbose is a promising therapeutic strategy for the treatment of patients with nonalcoholic steatohepatitis (NASH). Med Hypotheses. 65:377.
    10.Stewart CA, Vella A. (2005) Acarbose treatment in liver disease: cognitive or glycemic control? Clin Gastroenterol Hepatol. 3:108.
    11.Wehmeier UF, Piepersberg W. (2004) Biotechnology and molecular biology of the -glucosidase inhibitor acarbose. Appl Microbiol Biotechnol. 63:613.
    12. Mahmud T, Tornus I, Engelkrout E, Wolf E, Uy C, Floss HG, Lee S. (1999) Biosynthetic studies on the -glucosidase inhibitor acarbose in Actinoplanes sp.: 2-epi-5-epi-valiolone is the direct precursor of the valienamine moiety. J Am Chem Soc. 121:6973.
    13. Mahmud T. (2003) The C7N aminocyclitol family of natural products. Nat Prod Rep 20:137.
    14.Drepper A, Peitzmann R, Pape H. (1996) Maltokinase (ATP:maltose 1-phosphotransferase) from Actinoplanes sp.: demonstration of enzyme activity and characterization of the reaction product. FEBS Lett. 388:177.
    15.Hemker M, Stratmann A, Goeke K, Schroder W, Lenz J, Piepersberg W, Pape H. (2001) Identification, cloning, expression, and characterization of the extracellular acarbose-modifying glycosyltransferase, AcbD, from Actinoplanes sp. strain SE50. J Bacteriol. 183:4484.
    16.Zhang CS, Stratmann A, Block O, Bruckner R, Podeschwa M, Altenbach HJ, Wehmeier UF, Piepersberg W. (2002) Biosynthesis of the C(7)-cyclitol moiety of acarbose in Actinoplanes species SE50/110. 7-O-phosphorylation of the initial cyclitol precursor leads to proposal of a new biosynthetic pathway. J Biol Chem. 277:22853.
    17.Brunkhorst C, Wehmeier UF, Piepersberg W, Schneider E. (2002) The acbH gene of Actinoplanes sp. encodes a solute receptor with binding activities for acarbose and longer homologs. Res Microbiol. 156:322.
    18.Janecek S. (1997) alpha-Amylase family: molecular biology and evolution. Prog Biophys Mol Biol. 67:67.
    19.Cha HJ, Yoon HG, Kim YW, Lee HS, Kim JW, Kweon KS, Oh BH, Park KH. (1998) Molecular and enzymatic characterization of a maltogenic amylase that hydrolyzes and transglycosylates acarbose. Eur J Biochem. 253:251.
    20.Park KH, Kim MJ, Lee HS, Han NS, Kim D, Robyt JF. (1998) Transglycosylation reactions of Bacillus stearothermophilus maltogenic amylase with acarbose and various acceptors. Carbohydr Res. 313:235.
    21.Baek JS , Kim HY, Yoo SS , Cheong TK, Kim MJ, Lee SB, Abbott TP, Song HJ, Rhyu MR, Oh BH, Park KH. (2000) Synthesis of acarbose transfer products by Bacillus stearothermophilus maltogenic amylase with simmondsin. Industrial Crops and Products. 12 : 173.
    22.Lee SB, Park KH, Robyt JF. Inhibition of b-glycosidases by acarbose analogues containing cellobiose and lactose structures. (2001) Carbohydr Res. 331: 13.
    23.Bae HK, Lee SB, Park CS, Shim JH, Lee HY, Kim MJ, Baek JS, Roh HJ, Choi JH, Choe EO, Ahn DU, Park KH. (2002) Modification of ascorbic acid using transglycosylation activity of Bacillus stearothermophilus maltogenic amylase to enhance its oxidative stability. J Agric Food Chem. 50:3309.
    24.Baek JS, Kim HY, Abbott TP, Moon TW, Lee SB, Park CS, Park KH. (2003) Acarviosine-simmondsin, a novel compound obtained from acarviosine-glucose and simmondsin by Thermus maltogenic amylase and its in vivo effect on food intake and hyperglycemia. Biosci Biotechnol Biochem. 67:532.
    25.Kandra L, Remenyik J, Batta G, Somsak L, Gyemant G, Park KH. (2005) Enzymatic synthesis of a new inhibitor of alpha-amylases: acarviosinyl-isomaltosyl-spiro-thiohydantoin. Carbohydr Res. 340:1311.
    26.翟建富等.(1998)進階版生物技術. 教育部. Taipei.
    27.French C, Moore KE, and Ward J. (1996)Development of a simple method for the recovery of recombinant proteins from the Escherichia coli periplasm. Enzyme Microb Technol. 19:332.
    28.Sørensen HP, Mortensen KK. (2005) Advanced genetic strategies for
    recombinant protein expression in Escherichia coli. J Biotechnol. 115:113.
    29.Mergulhao FJ, Summers DK, Monteiro GA. (2005) Recombinant protein secretion in Escherichia coli. Biotechnol Adv. 23:177.
    30.Jonasson P, Liljeqvist S, Nygren PÅ and Ståhl S. (2002) Genetic design for facilitated production and recovery of recombinant proteins in Escherichia coli Biotechnol. Appl. Biochem. 35:91.
    31.Weickert MJ, Pagratis M, Curry SR, Blackmore R. (1997) Stabilization of apoglobin by low temperature increases yield of soluble recombinant hemoglobin in Escherichia coli. Appl Environ Microbiol. 63:4313.
    32.Wen Y, Feng M, Yuan ZY, Zhou P. (2005) Expression and overproduction of recombinant penicillin G acylase from Kluyvera citrophila in Escherichia coli. Enzyme Microb Technol. 37:233.
    33.Schein CH, Mathieu HM. (1988) Formation of soluble recombinant proteins in Escherichia coli is favored by lower growth temperature. Bio/Technology. 6:291.
    34.Schein CH. (2004) A cool way to make proteins. Nat Biotechnol. 22:826.
    35.Qing G, Ma LC, Khorchid A, Swapna GV, Mal TK, Takayama MM, Xia B, Phadtare S, Ke H, Acton T, Montelione GT, Ikura M, Inouye M. (2004) Cold-shock induced high-yield protein production in Escherichia col.i. Nat Biotechnol. 22:877.
    36.Yang QH, Wu CL, Lin K, Li L. (1997) Low concentration of inducer favors production of active form of 6-phosphofructo-2-kinase/fructose-2, 6 -bisphosphatase in Escherichia coli. Protein Expr Purif. 10:320.
    37.Turner P, Holst O, Karlsson EN. (2005) Optimized expression of soluble cyclomaltodextrinase of thermophilic origin in Escherichia coli by using a soluble fusion-tag and by tuning of inducer concentration. Protein Expr Purif. 39:54.
    38.Chenal A, Nizard P, Forge V, Pugniere M, Roy MO, Mani JC, Guillain F, Gillet D. (2002) Does fusion of domains from unrelated proteins affect their folding pathways and the structural changes involved in their function? A case study with the diphtheria toxin T domain. Protein. Eng. 15:383.
    39.Leemhuis H, Wehmeier UF, Dijkhuizen L. (2004) Single amino acid mutations interchange the reaction specificities of cyclodextrin glycosyltransferase and the acarbose-modifying enzyme acarviosyl transferase. Biochemistry. 4341:13204.

    下載圖示 校內:2006-09-12公開
    校外:2006-09-12公開
    QR CODE