| 研究生: |
柯博堯 Ker, Po-Yao |
|---|---|
| 論文名稱: |
負回授壓縮直流飄移濾波器之模擬與量測 Simulation and Measurement of Negative Feedback DC Offset Cancellation Filter |
| 指導教授: |
王是琦
Wong, Shyh-Chyi 洪茂峰 Houng, Mau-Phon 王永和 Wang, Yeong-Her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 負回授 、濾波器 、直流壓縮量 |
| 外文關鍵詞: | Negative feedback, Filter, DC compression |
| 相關次數: | 點閱:62 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
使用負回授的理論可以消除混波器輸出端所造成的直流飄移. 濾波器中包含了兩個操作放大器以及一個主動偏壓的濾波器, 與其他的理論相較之下, 負回授架構的優點除了可以壓縮直流飄移的現象外, 也可以將訊號放大並且送入基頻. 負回授消除直流飄移濾波器所呈現的是一個帶通的濾波器轉換函數, 從濾波器的頻率響應, 我們可以觀察到電路設定一個靠近直流的通帶, 與直流壓縮的特性, 本論文中將呈現模擬與量測的結果並討論,
在主動偏壓的低通濾波器中, 我們藉著P型電晶體產生一個浮接的大電阻, 這方法可以同時減低電路的面積以及所需的花費. 在單端輸出的濾波器結構中, 直流壓縮量為46dB, 頻寬為20MHz, 中心頻率為10MHz, 品質因素為0.5, 直流消耗為0.4mA, 直流功率消耗為1mW. 在完全差動的濾波器結構中, 直流壓縮量優於23dB, 頻寬為19.15MHz, 頻寬範圍微1MHz至20.15MHz, 頂峰頻率為5MHz, 品質因素為0.26, 直流消耗為0.841mA, 直流功率消耗為2.1mW. 兩個結構都很適合應用於低功率系統中. 電路採用台積電0.25um 1P5M的製程來實現.
Feedback theory can suppress DC offset voltage at the mixer output. This filter includes two operation amplifiers and an active bias low-pass filter. The advantages of feedback structure not only cancel DC offset phenomenon but also amplify signals passed to base-band. Feedback DC offset cancellation filter can carry on band-pass filter characteristics. From the frequency response, the filter not only sets a channel near zero frequency but also shows dc stress performance. This thesis presents simulations and implementations.
In the active bias low-pass filter, we realize the floating resistor by a PMOS. The method can minimize both the chip area and the cost. The single-ended filter exhibits DC compression -46dB, bandwidth 20MHz, center frequency 10MHz, quality factor 0.5, DC current consumption around 0.4mA, and DC power consumption around 1mW. The fully-differential filter exhibits DC compression better than 23dB, bandwidth 19.15MHz, channel range 1MHz~20.15MHz, peak frequency 5MHz, quality factor 0.26, DC current consumption 0.841mA, and DC power consumption 2.1mW. Both single-ended and fully-differential filters are suited for low power systems. We realize the circuit by TSMC 0.25um 1P5M technology.
[1]B. Razavi, “Recent advances in RF integrated circuits,” IEEE Communications Magazine, vol. 35, pp. 36-43, Dec. 1997.
[2]J.C. Rudell, Jia-Jiunn Ou, R.S. Narayanaswami, G. Chien, J.A. Weldon, Li Lin, King-Chun Tsai, Luns Tee, K. Khoo, D. Au, T. Robinson, D. Gerna, M. Otsuka, P.R. Gray, “Recent developments in high integration multi-standard CMOS transceivers for personal communication systems,” Low Power Electronics and Design, pp. 149 – 154, Aug. 1998.
[3]B. Razavi, “RF IC design challenges,” Design Automation Conference, pp. 408 – 413, June 1998.
[4]W. Namgoong, T.H. Meng, “Direct-conversion RF receiver design,” IEEE Trans. Communications, vol.49, pp. 518 – 529, March 2001.
[5]B. Razavi, S. Wu, “A 900-MHz/1.8-GHz CMOS receiver for dual-band applications,” IEEE J. Solid-State Circuits, vol. 33, pp. 2178 – 2185, Dec. 1998.
[6]B. Razavi, “Next-generation RF circuits and systems,” VLSI Advanced Research, pp. 270 – 282, Sept. 1997.
[7]M. Lehne, J.T. Stonick, U. Moon, “An adaptive offset cancellation mixer for direct conversion receiver in 2.4GHz CMOS,” IEEE international Symposium on Circuits and Systems, pp.28-31, May 2000.
[8]B. Razavi, “Challenges in portable RF transceiver design,” IEEE Circuits and Devices Magazine, vol. 12, pp. 12 – 25, Sept. 1996.
[9]A.A. Abidi, “Direct-Conversion Radio Transceivers for Digital Communications,” IEEE J. Solid-State Circuits, vol. 30, pp. 1399-1410, Dec. 1995.
[10]B. Razavi, “Challenges and trends in RF design,” ASIC Conference and Exhibit, pp. 81 – 86, Sept. 1996.
[11]B. Razavi, “Design Considerations for Direct Conversion Receivers,” IEEE Trans. Circuits and Systems II, vol. 44, pp. 428 – 435, June 1997.
[12]B. Razavi, RF Microelectronics, Prentice Hall, 1997.
[13]B. Razavi, “Architectures and circuits for RF CMOS receivers,” IEEE Custom Integrated Circuits Conference, pp. 393 – 400, May 1998.
[14]B. Razavi, “A 900-MHz CMOS Direct Conversion Receiver,” VLSI Circuits, pp. 113 – 114, June 1997.
[15]D. Johns, K. Martin, Analog Integrated Circuit Design, Wiley, 1997.
[16]W. Zhang, M. Hassoun, “A small signal analysis of a gain-boosting amplifier,” Mixed-Signal Design, pp. 141 – 146, Feb. 2000.
[17]B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2000.
[18]R. Pallas-Areny, J.G. Webstar, “Common mode rejection ratio in differential amplifiers,” IEEE Trans. Instrumentation and Measurement, vol. 40, pp.669 – 676, Aug 1991.
[19]M.S.J. Steyaert, W.M.C. Sancen, “Power supply rejection ratio in operational transconductance amplifiers,” IEEE Trans. Circuits and Systems, vol. 37, pp.1077 – 1084, Sept. 1990.
[20]A.B. Dowlatabadi, J.A. Connelly, “A new offset cancellation technique for CMOS differential amplifiers,” IEEE ISCAS Circuits and Systems, vol.3, pp. 2229 – 2232, May 1995.
[21]H. Schmid, G.S. Moschytz, “Fundamental frequency limitations in current-mode Sallen-Key filter,” IEEE ISCAS Circuits and Systems, vol. 1 ,pp. 57 – 60, June 1998.
[22]A. Fabre, J.L. Houle, “Voltage-mode and current-mode Sallen-Key implementations based on translinear conveyors,” IEE Devices and Systems, vol. 139, pp. 491 – 497, Aug. 1992.
[23]B. Razavi, “A 5.2-GHz CMOS receiver with 62-dB image rejection,” IEEE J. Solid-State Circuits, vol. 36, pp. 810 – 815, May 2001.
[24]C.C. Hung, M. Ismail, K. Halonen, V. Porra, “Low-voltage rail-to-rail CMOS differential difference amplifier,” IEEE ISCAS Circuits and Systems, vol. 1, pp. 145 – 148, June 1997.
[25]V. Rentala, S. Rout, E. Lee, R.J. Weber, “A constant GM rail-to-rail opamp with a novel input stage for BiCMOS process,” IEEE ISCAS Circuits and Systems, vol. 1, pp. 224 – 227, May 2001.
[26]P.E. Allen, D.R. Holberg, CMOS Analog Circuit Design, Oxford, 2002.