| 研究生: |
李俊昱 Li, Chun-Yu |
|---|---|
| 論文名稱: |
高濃度電子層應用於表面電漿子之研究 Applications of High Electron Density Layer in Plasmonics |
| 指導教授: |
藍永強
Lan, Yung-Chiang |
| 共同指導教授: |
張允崇
Chang, Yun-Chorng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 表面電漿共振 、高電子遷移率電晶體感測器 、奈米球鏡微影術 |
| 外文關鍵詞: | Surface plasmon resonance, High electron mobility transistor, Nanospherical-lens lithography |
| 相關次數: | 點閱:153 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本學位論文主要闡述高濃度電子層於表面電漿領域之研究,在實驗中包含以有限元素分析法(Finite element method)為模擬方法,以及製程與量測,並以數值模擬方法對實驗作預期與規劃。
首先我們利用絕緣層-透明導電薄膜接面形成之高濃度電荷累積層作為激發表面電漿子模擬,在模擬中以帕松方程式(Poisson’s equation)為模型推導出發點,推導出在電荷累積層中電子濃度分佈與電位分佈,並以隨位置變化之電子濃度分佈改寫德魯模型(Drude model)。模擬激發方法利用側向入射耦合法(End-fire coupling)激發表面電漿子,另外以不同表面電位探討電漿子波數的變化以及侷限效果,此模擬成功演示了具可調變性的表面電漿子元件。
實驗另一部份為高電子遷移率電晶體作為感測器應用,藉以元件表面態改變進而影響高濃度電子層通道與其高反應速率的優點,作為侷域性表面電漿中熱載子(Hot electron)的感測。我們以奈米球鏡微影術於元件感測區中製作橢圓長軸光譜響應峰值位於980 nm之奈米結構,以具單一偏振之980 nm雷射照射樣品,由鎖向放大器量測電流變化,得到電流差值是和侷域性表面電漿共振有關,且透過其他對照實驗量測,建立了以電元件感測熱載子的模型。
We have discussed the application of high electron density layer in plasmonics in this thesis, including the nanofabrication, and using the finite element analysis method to expect the result of experiment.
In first part of the thesis, we use the accumulation layer which is created at the interface between insulator and transparent conductive oxide to excite surface plasmon polaritons, following the standard analysis of a MOS structure, we derive the electron density and surface potential in accumulation layer within the ITO material, and describe the optical characteristics of ITO with and within accumulation layer by Drude model, we successfully excite surface plasmon polaritons by end-fired coupling, and make the surface plasmon polaritons be confined in the area we apply voltage, and we demonstrate wave vector exchange by different bias, in conclusion, the tunable plasmon device has been present.
In second part of the thesis, we use the AlGaN/GaN HEMT which is applied to sensing application, the gateless structure is used in the study, due to surface state changed by charge, the sheet electron concentration of 2DEG being changed in order to maintain the charge neutrality, this is the reason why use it to be the sensor, we fabricate the nanoellipse arrays by nanospherical-lens lithography at the sensing region which LSPR response is at 980 nm, and we illuminate the 980 nm laser to find out variety of current, as well as monitor the temperature in experiment. Finally, we demonstrate the model of hot carrier which is created by LSPR effect, and how it inject to the device, as well as explain why does the current rise when 980 nm laser is illuminating.
1. Krishnan, A., et al., Multilayer nanoparticle arrays for broad spectrum absorption enhancement in thin film solar cells. Opt Express, 2014. 22 Suppl 3: p. A800-11.
2. Jensen, T.R., et al., Nanosphere Lithography: Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles. The Journal of Physical Chemistry B, 2000. 104(45): p. 10549-10556.
3. Ashino, M. and M. Ohtsu, Fabrication and evaluation of a localized plasmon resonance probe for near-field optical microscopy/spectroscopy. Applied Physics Letters, 1998. 72(11): p. 1299-1301.
4. Matsubara, K., S. Kawata, and S. Minami, Optical chemical sensor based on surface plasmon measurement. Applied Optics, 1988. 27(6): p. 1160-1163.
5. Cheng, B.H., et al., Optical Hybrid-Superlens Hyperlens for Superresolution Imaging. IEEE Journal of Selected Topics in Quantum Electronics, 2013. 19(3): p. 4601305-4601305.
6. Kang, B.S., et al., Electrical detection of immobilized proteins with ungated AlGaN∕GaN high-electron-mobility Transistors. Applied Physics Letters, 2005. 87(2).
7. Jia, X., et al., Highly selective and sensitive phosphate anion sensors based on AlGaN/GaN high electron mobility transistors functionalized by ion imprinted polymer. Sci Rep, 2016. 6: p. 27728.
8. Chung, G.H., T.A. Vuong, and H. Kim, Demonstration of hydrogen sensing operation of AlGaN/GaN HEMT gas sensors in extreme environment. Results in Physics, 2019. 12: p. 83-84.
9. Thapa, R., et al., Biofunctionalized AlGaN/GaN high electron mobility transistor for DNA hybridization detection. Applied Physics Letters, 2012. 100(23).
10. Bukasov, R. and J.S. Shumaker-Parry, Highly Tunable Infrared Extinction Properties of Gold Nanocrescents. Nano Letters, 2007. 7(5): p. 1113-1118.
11. Rodríguez-Fortuño, F.J., et al., Highly-sensitive chemical detection in the infrared regime using plasmonic gold nanocrosses. Applied Physics Letters, 2011. 98(13).
12. Colson, P., C. Henrist, and R. Cloots, Nanosphere Lithography: A Powerful Method for the Controlled Manufacturing of Nanomaterials. Journal of Nanomaterials, 2013. 2013: p. 1-19.
13. Chang, Y.C., et al., High-throughput nanofabrication of infra-red and chiral metamaterials using nanospherical-lens lithography. Sci Rep, 2013. 3: p. 3339.
14. Haynes, C.L. and R.P. Van Duyne, Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics. The Journal of Physical Chemistry B, 2001. 105(24): p. 5599-5611.
15. Semiconductor.Devices_Physics.Technology_Sze.2ndEd_Wiley_2002
16. 黃智方, 張庭輔, "氮化鎵功率元件簡介", 電子資訊, 20卷, 1期, pp. 30-40, 2014
17. Ambacher, O., et al., Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. Journal of Applied Physics, 1999. 85(6): p. 3222-3233.
18. Kang, B., et al., Wide Bandgap Semiconductor Nanorod and Thin Film Gas Sensors. Sensors, 2006. 6.
19. Roccaforte, F., et al., An Overview of Normally-Off GaN-Based High Electron Mobility Transistors. Materials (Basel), 2019. 12(10).
20. Ibbetson, J.P., et al., Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors. Applied Physics Letters, 2000. 77(2): p. 250-252.
21. Greco, G., F. Iucolano, and F. Roccaforte, Ohmic contacts to Gallium Nitride materials. Applied Surface Science, 2016. 383: p. 324-345.
22. Schroder_Semiconductor Material & Device Characterization.
23. Dharmarasu, N., et al., Demonstration of AlGaN/GaN High-Electron-Mobility Transistors on 100-mm-Diameter Si(111) by Ammonia Molecular Beam Epitaxy. Applied Physics Express, 2012. 5(9).
24. 邱國斌, 蔡定平, “金屬表面電漿簡介”, 物理雙月刊, 28卷, 2期, pp.472-482, 2006.
25. Atwater, H., The Promise of Plasmonics. Scientific American, 2007. 296: p. 56-63.
26. Stefan A. Maier, “Plasmonics: Fundamentals and Applications”, Springer US, 2007.
27. Maas, R., et al., Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths. Nature Photonics, 2013. 7(11): p. 907-912.
28. Jackson, J.D., Classical electrodynamics. 1999: Wiley.
29. Pelton, M., J. Aizpurua, and G. Bryant, Metal‐nanoparticle plasmonics. Laser & Photonics Review, 2008. 2(3): p. 136-159.
30. Denkov, N., et al., Mechanism of formation of two-dimensional crystals from latex particles on substrates. Langmuir, 1992. 8(12): p. 3183-3190.
31. Ormonde, A.D., et al., Nanosphere Lithography: Fabrication of Large-Area Ag Nanoparticle Arrays by Convective Self-Assembly and Their Characterization by Scanning UV−Visible Extinction Spectroscopy. Langmuir, 2004. 20(16): p. 6927-6931.
32. 張允崇“應用奈米球微影術及奈米球鏡微影術製作表面電漿子奈米結構”, 台灣奈米會刊, 31卷, 2期, pp. 26-32, 2012.
33. Chang, Y.-C., et al., A large-scale sub-100 nm Au nanodisk array fabricated using nanospherical-lens lithography: a low-cost localized surface plasmon resonance sensor. Nanotechnology, 2013. 24(9): p. 095302.
34. 甘娥忠 and 于亚婷, 有限元法/: 原理、建模及应用. 2004: 国防工业出版社.
35. COMSOL Multiphysics工程实践与理论仿真: 多物理场数值分析技术. 2012: 电子工业出版社.
36. Naik, G.V., V.M. Shalaev, and A. Boltasseva, Alternative plasmonic materials: beyond gold and silver. Adv Mater, 2013. 25(24): p. 3264-94.