簡易檢索 / 詳目顯示

研究生: 鄭博文
Cheng, Po-Wen
論文名稱: 數位孿生與熱影像於啟動機動力傳動模組健康評估
Thermal Imaging and Digital Twin-Based Health Assessment of Starter Motor Power Transmission Modules
指導教授: 蔡明祺
Tsai, Mi-Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 107
中文關鍵詞: 啟動馬達健康評估數位孿生熱影像深度學習多模態模型
外文關鍵詞: Starter Motor, Health Assessment, Digital Twin, Thermal Imaging, Deep Learning, Multimodal Model
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 啟動馬達為車輛動力系統中關鍵元件,其健康狀態對車輛可靠性具決定性影響。隨著循環經濟與再製技術之推進,啟動馬達之再製成為產業關注重點,惟傳統檢測方式高度依賴拆解與人工判斷,檢測效率低落且具潛在誤判風險,亟需導入即時、非破壞性之健康評估系統。
    本研究針對啟動馬達動力傳動模組中最易耗損之碳刷元件,設計一套結合電氣訊號、熱影像之多模態健康預測架構。實驗中透過耐久測試平台蒐集馬達運作期間之電壓、電流與熱影像資料,並以數位孿生模型生成預訓練資料,強化模型於樣本不足條件下之學習穩定性與泛化能力。核心分類模型採用卷積、ViT (Vision Transformer) 編碼器與MMTransformer (Multimodal Transformer) 架構,對碳刷健康狀態進行評估。
    本研究除了進行資料處理流程與特徵萃取分析,亦透過消融實驗與多層注意力比較測試,量化各模態與模型結構對分類效能之貢獻。實驗結果顯示,結合熱影像與電氣訊號之多模態模型可顯著提升對磨耗過渡區之辨識能力,並有效降低因單一模態訊號異常所造成之誤判風險。最終模型在碳刷健康狀態分類任務上達成高準確率與穩定性,具備部署於回收檢測現場與嵌入式邊緣裝置之潛力。

    The starter motor is vital to a vehicle’s powertrain, but traditional inspections rely on disassembly and manual judgment, leading to inefficiency and potential errors.
    This study focuses on carbon brushes—the most wear-prone component—proposing a multimodal health assessment system that fuses electrical signals and thermal images. A digital twin generates pretraining data to improve model robustness with limited samples.
    To address the limitations of single-modality diagnostics for carbon brush wear, this study develops a multimodal health assessment model that integrates electrical signal and thermal image analysis. The framework employs a convolutional network for local feature extraction, a Vision Transformer (ViT) encoder for global context modeling, and an MMTransformer for cross-modal fusion, enabling accurate and stable classification of carbon brush health states.

    摘要 I SUMMARY II 誌謝 XIV 目錄 XV 表目錄 XIX 圖目錄 XX 符號表 XXIV 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究目的 3 1.4 文獻回顧 3 1.4.1 壽命預測(Remaining Useful Life, RUL) 4 1.4.2 熱影像(Infrared Thermography, IRT) 4 1.4.3 深度學習模型 6 1.5 本文架構 8 第二章 啟動機動力傳動模組耐久測試系統 10 2.1 再製啟動馬達動力傳動模組檢測 10 2.2 耐久測試機台介紹 10 2.3 耐久測試主要測試項目概覽 11 2.3.1 碳刷 11 2.3.2 換向器 13 2.3.3 離合器 14 2.4 健康評估目標 15 第三章 啟動機動力傳動模組數位孿生模型 17 3.1 啟動機動力傳動模組系統數位孿生架構 17 3.2 啟動馬達動力傳動模組 19 3.2.1 永磁直流馬達 19 3.2.2 行星齒輪減速機 19 3.3 啟動機動力傳動模組電磁開關啟動步驟 20 3.4 啟動機動力傳動模組電磁開關模擬建模 22 第四章 啟動機動力傳動模組健康評估 31 4.1 啟動機動力傳動模組健康評估 31 4.2 熱影像應用於馬達健康評估 31 4.3 電氣訊號應用於馬達健康評估 33 4.4 數位孿生用於馬達健康評估 35 4.5 馬達健康評估模型輸入輸出 36 第五章 實驗架構與結果分析 37 5.1 耐久測試機台量測設備架設 37 5.2 實驗數據集描述 41 5.3 資料前處理 42 5.3.1 數據標準化 43 5.3.2 時序資料對齊與補值 44 5.3.3 特徵正規化處理 44 5.3.4 標籤建立與分類目標定義 44 5.4 電氣訊號與健康評估之關聯性分析 45 第六章 MMTransformer 模型訓練與優化 47 6.1 MMTransformer模型設計總覽 47 6.2 電氣訊號處理器 (Signal Embedding) 50 6.2.1 一維膨脹卷積 (1-D Dilated Convolution) 51 6.2.2 線性整流函式 (ReLu) 52 6.2.3 平均池化 (Average pooling) 53 6.2.4 線性層 (Linear layer) 54 6.3 影像處理器 (Vision embedding) 54 6.3.1 輸入格式標準化 (Resize) 55 6.3.2 二維卷積(2D Convolution) 56 6.3.3 展平 (Flatten) 57 6.4 ViT 編碼器 (ViT Encoder) 58 6.5 融合模組 (Fusion Module) 59 6.6 數位孿生資料集模型預訓練 60 6.6.1 模型預訓練資料生成方法 60 6.6.2 預訓練流程 62 6.7 模型訓練與評估 63 6.7.1 交叉驗證 (K-Fold Validation) 66 6.7.2 影像處理器消融測試 67 6.7.3 預訓練策略於不同樣本規模下之準確率 70 6.7.4 Attention 層數比較與分析 71 第七章 結論與未來建議 73 7.1 結論 73 7.2 未來展望 74 參考文獻 75

    [1]StudentLesson, Engine Starter Motor: Understanding its role in starting your vehicle [Video], 2022. [Online]. Available: https://www.youtube.com/watch?v=IeyLbHELT8Y
    [2]C. -P. Yi, Y. J. Lin, P. -J. Ho, W. -D. Chung, P. -H. Chou and S. -C. Yang, "A CUSUM-based adaptive bearing fault features tracking method for RUL estimation," 2023 IEEE Energy Conversion Congress and Exposition (ECCE), Nashville, TN, USA, 2023, pp. 1851-1856
    [3]A. Choudhary, D. Goyal and S. S. Letha, "Infrared Thermography-Based Fault Diagnosis of Induction Motor Bearings Using Machine Learning," in IEEE Sensors Journal, vol. 21, no. 2, pp. 1727-1734, 15 Jan.15, 2021
    [4]M. Piechocki, T. Pajchrowski, M. Kraft, M. Wolkiewicz, and P. Ewert, “Unraveling induction motor state through thermal imaging and edge processing: A step towards explainable fault diagnosis,” *Eksploatacja i Niezawodność Maintenance and Reliability*, vol. 25, no. 3, 2023
    [5]A. Vaswani et al., “Attention is all you need,” in Proc. 31st Int. Conf. Neural Information Processing Systems (NeurIPS), Red Hook, NY, USA: Curran Associates Inc., 2017, pp. 6000–6010.
    [6]A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.
    [7]Y. Moroto, K. Maeda, R. Togo, T. Ogawa, and M. Haseyama, “Multimodal transformer model using time-series data to classify winter road surface conditions,” Sensors, vol. 24, no. 11, p. 3440, 2024
    [8]蔡忠翰, “深度學習應用於啟動機動力傳動模組品質檢測,” 碩士論文, 國立成功大學, 台南市, 2025.
    [9]The Engineering Mindset, How a car’s electric starter motor works [Video],YouTube.[Online].Available: https://www.youtube.com/watch?v=7eN1gxH6lE4[Accessed: Jul. 14, 2025]
    [10]K.K.News,“汽車啟動馬達與起動器的工作原理解析,” *DailyVie, https://kknews.cc/zh-my/car/3xk8aao.html, [Accessed: Jul. 14, 2025].
    [11]P. Lorrain and D. R. Corson, Electromagnetic Fields and Waves, 3rd ed. New York: Freeman, 1998.
    [12]N. S. Nise, Control Systems Engineering, 7th ed. Hoboken, NJ: John Wiley & Sons, 2019.
    [13]C. K. Alexander and M. N. O. Sadiku, Fundamentals of Electric Circuits, 4th ed. New York: McGraw-Hill, 2008.
    [14]DAHKEECO.,“Allproductlist,”[Online].Available: https://www.cens.com/cens/html/zh/supplier/supplier_home_22015.html. [Accessed: Jul. 15, 2025].
    [15]Python Software Foundation, “Python Logo,” [Online]. Available: https://www.python.org/community/logos/. [Accessed: Jul. 17, 2025].
    [16]東元電機股份有限公司,“東元感應電動機使用說明書,”技術文件,2012.[Online].Available:https://file.yzimgs.com/392546/2012061512424275.pdf. [Accessed: Jul. 15, 2025].
    [17]新瀚工業股份有限公司, “馬達保護的基本觀念與方式,” Shini.com,[Online].Available:https://www.shini.com/ep_edm/tw/contect_589.html. [Accessed: Jul. 15, 2025].
    [18]I. Khalfaoui-Hassani, “Dilated convolution with learnable spacings,” arXiv preprint arXiv:2112.03740v4, May 11, 2023. [Online]. Available: https://arxiv.org/abs/2112.03740
    [19]K. O’Shea and R. Nash, “An introduction to convolutional neural networks,” arXiv preprint arXiv:1511.08458, Nov. 2015. [Online]. Available: https://arxiv.org/abs/1511.08458
    [20]M.-C. Popescu, V. Balas, L. Petrescu-Popescu, and N. Mastorakis, “Multilayer perceptron and neural networks,” *WSEAS Trans. Circuits Syst.*, vol. 8, pp. –, 2009.
    [21]A. Mao, M. Mohri, and Y. Zhong, “Cross‑Entropy Loss Functions: Theoretical Analysis and Applications,” in *Proceedings of the 40th International Conference on Machine Learning (ICML 2023)*, Honolulu, Hawaii, USA, 2023.
    [22]D. Berrar, “Cross-Validation,” in Encyclopedia of Bioinformatics and Computational Biology, S. Ranganathan, M. Gribskov, K. Nakai, and C. Schönbach, Eds. Amsterdam, The Netherlands: Elsevier, 2018, vol. 1, pp. 542–545.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE