簡易檢索 / 詳目顯示

研究生: 林信翰
Lin, Hsing-Han
論文名稱: 探討由非結構性蛋白1片段/一致性外膜蛋白第三結構域/非結構性蛋白3片段所組成的重組蛋白對登革病毒感染提供之保護效果
Studies on the protective effects against dengue virus infection induced by active immunization with NS1f/cEDIII/NS3f recombinant proteins
指導教授: 林以行
Lin, Yee-shin
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 86
中文關鍵詞: 登革病毒非結構性蛋白1一致性外膜蛋白第三結構域非結構性蛋白3
外文關鍵詞: dengue virus, nonstructural protein 1, consensus envelop protein domain III, nonstructural protein 3
相關次數: 點閱:61下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 登革病毒 ( DENV ) 是一種具有4種不同血清型的蚊媒病毒,每年大約會造成3.9億個感染病例。大部分的感染者只會出現輕微的症狀或甚至無徵狀,然而,少數一部分的人可能會發展成嚴重的登革出血熱以及導致登革休克症候群。直到現在,只有一支減毒登革疫苗Dengvaxia被核可上市,但是它對疾病的保護程度不一以及存在引發嚴重症狀的風險,讓它的使用仍然有很大的疑慮。我們認為,比起活體減毒疫苗,由重組蛋白組成的次單元疫苗可能會是更好的候選者。為了讓疫苗能產生對非結構性蛋白 ( NS ) 專一的抗體,並對受登革病毒感染的細胞進行補體依賴性細胞毒性作用 ( CDC ),我們選擇NS1作為疫苗的組成元素。然而在我們的先前研究中指出,抗NS1抗體會和人體內的內皮細胞以及血小板進行交叉反應並造成其失去功能,所以我們去除NS1位於C端的區域以產生出∆C NS1。另外,一致性外膜蛋白第三結構域 ( cEDIII ) 在四型登革病毒中具有相似的氨基酸序列,其所誘導的抗體對於四型登革病毒皆具有中和活性。在我們的先前研究中也發現將重組蛋白cEDIII-∆C NS1予以免疫小鼠,小鼠所產生的抗體不僅對四型登革病毒皆具有中和活性,也同時能藉由補體介導的毒殺作用殺死被登革病毒感染的細胞。而為了更進一步增強細胞免疫力,我們另外選擇了在其他研究中證實可以引發CD4+和CD8+ T細胞反應的NS3的C端區域。因此在本研究中,我們建構了由∆C NS1片段、cEDIII和NS3片段所組成的重組蛋白∆C NS1f-cEDIII-NS3cf和∆C NS1f-NS3cf作為疫苗的候選,並將重組蛋白轉染至HEK293F以及Drosophila S2表達系統中並純化出蛋白。我們將重組蛋白加上alum佐劑以皮下注射施打3劑至小鼠體內,並分析重組蛋白在受登革病毒感染的小鼠提供的保護效果。從結果得知,在抗體反應的細胞試驗中,疫苗免疫所誘導的抗體在∆C NS1f-cEDIII-NS3cf施打組別顯示出中和活性,∆C NS1f-NS3cf施打組別則無;而在補體介導的毒殺作用上兩個組別都顯示具保護力的結果;另外在小鼠的登革病毒感染模型中,有施打疫苗的組別,比起控制組別在出血時間以及血清中病毒量上都有顯著的下降。研究結果顯示,不管是從HEK293F或是Drosophila S2系統所純化的重組蛋白誘導的抗體不僅在體外試驗顯示抗病毒的效果,在感染登革病毒的小鼠模型中也能提供保護效果。這些結果代表這兩支重組蛋白疫苗皆可在登革疫苗的發展中作為有潛力的疫苗候選者。

    Dengue virus (DENV) is a well-known mosquito-borne virus with four serotypes which cause over 390 million infection cases every year. Most of the infected patients have mild symptoms or even asymptomatic, while a small proportion of them develop severe dengue hemorrhagic fever and dengue shock syndrome. Up to date, there is only one licensed dengue vaccine, Dengvaxia. Its overall efficacy to disease and the risk of vaccine-induced severe adverse effect still need to be concerned. Compared to the live attenuated vaccines, we consider that recombinant protein subunit vaccine might be a better vaccine candidate. In order to induce the nonstructural (NS) protein-specific antibody (Ab) triggering complement-dependent cytolysis (CDC) to DENV-infected cells, we chose NS1 as a component of subunit vaccine. However, in our previous studies, anti-DENV NS1 Abs can lead to endothelial cell and platelet dysfunction by cross reactivity. We therefore modified the DENV NS1 by depleting the C-terminal region to generate a △C NS1. Also, Abs against consensus envelope protein domain III (cEDIII), of which the amino acid sequences are consensus among four serotypes of DENV, showed neutralizing activity against all the four serotypes of DENV. Our previous studies showed that Abs induced by recombinant protein cEDIII-ΔC NS1 can neutralize four serotypes of DENV and also cause complement-mediated cytolysis of DENV-infected cells. To enhance the cellular immunity, we further selected C-terminal region of NS3 protein, which was found to induce CD4+ and CD8+ T cell responses. In this study, we have constructed the recombinant proteins composing of △C NS1 fragment, cEDIII, and NS3c fragment as the vaccine candidate, and purified the recombinant proteins, ∆C NS1f-cEDIII-NS3cf and ∆C NS1f-NS3cf, from transfected HEK293F cells and stable clone Drosophila S2 cells. We immunized 3 doses of vaccine candidates in alum adjuvant and analyzed the protective effects of these recombinant proteins in DENV2-infected mice. Our results demonstrated that Abs in serum from ∆C NS1f-cEDIII-NS3cf-immunized mice showed neutralizing effects but not in serum from ∆C NS1f-NS3cf-immunized mice. Additionally, CDC induced by vaccine-immunized groups both showed protective results in vitro. Besides, bleeding time and viral titer of both ∆C NS1f-cEDIII-NS3cf- and ∆C NS1f-NS3cf-immunized mice were significantly reduced as compared with the control groups. In conclusion, this study reveals that recombinant proteins from both HEK293F and Drosophila S2 expression systems can not only induce Abs that show efficacy against virus in vitro but provide protection against DENV infection in the mouse model. These recombinant proteins are considered as potential candidates in DENV vaccine development.

    中文摘要 I Abstract III Acknowledgement V Table of Contents VI Figure List IX Abbreviations XI Introduction 1 1. Epidemiology of DENV 1 2. Characteristics and components of DENV 2 I. The structural proteins (C, prM, and E) 2 II. The nonstructural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5) 3 3. Clinical symptoms of dengue disease 5 4. The pathogenesis of DENV infection 6 I. Cell and tissue tropism of DENV 6 II. Virus variation and virulence 7 III. Antibody-dependent enhancement (ADE) 7 IV. Cellular immune response 8 V. Soluble factors 8 VI. Autoimmunity 8 VII. Activation of the Complement System 9 VIII. Mast cell activation 9 5. Animal model of DENV research 10 6. DENV vaccine development 10 Specific aims 16 1. To investigate the Ab responses and protective effects induced by two recombinant proteins produced from HEK293F cells. 17 2. To determine the Ab responses and protective effects induced by two recombinant proteins produced from Drosophila S2 cells. 17 Materials and Methods 18 A. Materials 18 A-1 Mice 18 A-2 Cell lines 18 A-3 Viruses 18 A-4 Preparation of recombinant proteins 19 A-5 Preparation of mixing immunogen with the ImjectTM Alum adjuvant 21 A-6 Drugs and reagents 21 A-7 Antibodies 24 A-8 Kits 25 A-9 Consumables 25 A-10 Instruments 26 B. Methods 28 B-1 Cell culture 28 B-2 Virus culture 28 B-3 Plaque assay 28 B-4 Focus forming assay (FFA) 29 B-5 Gel electrophoresis 29 B-6 Western blotting 29 B-7 Active immunization mouse model 30 B-8 Serum Ab titer determination 30 B-9 Focus reduction neutralization test (FRNT) 31 B-10 Antibody-dependent complement-mediated cytolytic assay (CDC) 31 B-11 Infection mouse model 32 B-12 Bleeding time 32 B-13 Indirect fluorescent assay (IFA) 32 B-14 Statistical analysis 33 Results 34 1. Active immunization with recombinant ∆C NS1f-cEDIII-NS3cf and ∆C NS1f-NS3cf proteins purified from transfected HEK293F cells using alum as adjuvant induce Ab response and provide protection against DENV2 challenge both in vitro and in vivo. 34 1.1 Preparation of recombinant proteins from HEK293F cells. 34 1.2 Immunization with recombinant proteins needs three doses to induce high Ab titers in immunized mice. 35 1.3 Anti-cEDIII Abs in His-∆C NS1f-cEDIII-NS3cf-His-immunized mouse serum can neutralize DENV2 infection. 35 1.4 Sera from His-∆C NS1f-cEDIII-NS3cf-His protein- and His-∆C NS1f-NS3cf-His protein-immunized mice induce complement-dependent cytolysis to kill DENV2-infected cells. 36 1.5 Recombinant proteins expressed from HEK293F cells provide protective effects against DENV2 challenge in vivo. 36 2. Active immunization with recombinant ∆C NS1f-cEDIII-NS3cf and ∆C NS1f-NS3cf proteins purified from stable clone of Drosophila S2 cells using alum as adjuvant induce Ab response and provide protection against DENV2 challenge both in vitro and in vivo. 37 2.1 Preparation of recombinant proteins from Drosophila S2 expression system. 37 2.2 Sera from recombinant protein-immunized mice can trigger neutralization and Ab-mediated complement-dependent cytolysis in vitro. 37 2.3 Recombinant proteins induce similar Ab responses between 4-week-old and 6-week-old mice. 38 2.4 Subunit vaccine candidates prepared from Drosophila S2 cells provide protection in DENV2-infected mouse model. 39 Discussion 40 Conclusion 46 References 47 Figures 56 Appendix 75

    1. Messina, J.P., et al., Global spread of dengue virus types-mapping the 70 year history. Trends Microbiol, 2014. 22(3): p. 138-46.
    2. WHO, Dengue : Guidelines for diagnosis, treatment, prevention, and control. 2009.
    3. Normile, D., et al., Dengue vaccine trial poses public health quandary. Science, 2014. 345(6195): p. 367-8.
    4. Gubler, D.J., et al., Dengue and dengue hemorrhagic fever. Clin Microbiol Rev, 1998. 11(3): p. 480-96.
    5. WHO, Dengue and severe dengue. 2020.
    6. Chen, W.J., et al., Dengue outbreaks and the geographic distribution of dengue vectors in Taiwan: A 20-year epidemiological analysis. Biomed J, 2018. 41(5): p. 283-9.
    7. Wang, S.F., et al., Severe dengue fever outbreak in Taiwan. Am J Trop Med Hyg, 2016. 94(1): p. 193-7.
    8. Wang, S.F., et al., Consecutive large dengue outbreaks in Taiwan in 2014-2015. Emerg Microbes Infect, 2016. 5(12): p. e123.
    9. Paranjape, S.M., et al., Control of dengue virus translation and replication. Curr Top Microbiol Immunol, 2010. 338: p. 15-34.
    10. Byk, L.A., et al., Properties and functions of the dengue virus capsid protein. Annu Rev Virol, 2016. 3(1): p. 263-81.
    11. Balinsky, C.A., et al., Nucleolin interacts with the dengue virus capsid protein and plays a role in formation of infectious virus particles. J Virol, 2013. 87(24): p. 13094-106.
    12. Carvalho, F.A., et al., Dengue virus capsid protein binding to hepatic lipid droplets (LD) is potassium ion dependent and is mediated by LD surface proteins. J Virol, 2012. 86(4): p. 2096-108.
    13. Samsa, M.M., et al., Dengue virus capsid protein usurps lipid droplets for viral particle formation. PLoS Pathog, 2009. 5(10): p. e1000632.
    14. Perera, R. and R.J. Kuhn, Structural proteomics of dengue virus. Curr Opin Microbiol, 2008. 11(4): p. 369-77.
    15. Zhang, W., et al., Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nat Struct Biol, 2003. 10(11): p. 907-12.
    16. Hsieh, S.C., et al., Highly conserved residues in the helical domain of dengue virus type 1 precursor membrane protein are involved in assembly, precursor membrane (prM) protein cleavage, and entry. J Biol Chem, 2014. 289(48): p. 33149-60.
    17. Zhang, X., et al., Structures and functions of the envelope glycoprotein in flavivirus infections. Viruses, 2017. 9(11): 338
    18. Wahala, W.M., et al., Dengue virus neutralization by human immune sera: role of envelope protein domain III-reactive antibody. Virology, 2009. 392(1): p. 103-13.
    19. Alcala, A.C., et al., Secretion of nonstructural protein 1 of dengue virus from infected mosquito cells: Facts and speculations. J Virol, 2018. 92(14): p. e00275-18
    20. Chen, H.R., et al., Dengue virus non-structural protein 1: a pathogenic factor, therapeutic target, and vaccine candidate. J Biomed Sci, 2018. 25(1): 58.
    21. Lin, S.W., et al., Dengue virus nonstructural protein NS1 binds to prothrombin/thrombin and inhibits prothrombin activation. J Infect, 2012. 64(3): p. 325-34.
    22. Gutsche, I., et al., Secreted dengue virus nonstructural protein NS1 is an atypical barrel-shaped high-density lipoprotein. Proc Natl Acad Sci U S A, 2011. 108(19): p. 8003-8.
    23. Avirutnan, P., et al., Antagonism of the complement component C4 by flavivirus nonstructural protein NS1. J Exp Med, 2010. 207(4): p. 793-806.
    24. Puerta-Guardo, H., et al., Dengue virus NS1 disrupts the endothelial glycocalyx, leading to hyperpermeability. PLoS Pathog, 2016. 12(7): p. e1005738.
    25. Modhiran, N., et al., Dengue virus NS1 protein activates cells via toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Sci Transl Med, 2015. 7(304): 304ra142
    26. Modhiran, N., et al., Dengue virus NS1 protein activates immune cells via TLR4 but not TLR2 or TLR6. Immunol Cell Biol, 2017. 95(5): p. 491-5.
    27. Lin, C.F., et al., Antibodies from dengue patient sera cross-react with endothelial cells and induce damage. J Med Virol, 2003. 69(1): p. 82-90.
    28. Lin, Y.S., et al., Molecular mimicry between virus and host and its implications for dengue disease pathogenesis. Exp Biol Med (Maywood), 2011. 236(5): p. 515-23.
    29. Lin, C.F., et al., Patient and mouse antibodies against dengue virus nonstructural protein 1 cross-react with platelets and cause their dysfunction or depletion. Am J Infect Dis, 2008. 4(1): p. 69-75.
    30. Wan, S.W., et al., C-terminal region of dengue virus nonstructural protein 1 is involved in endothelial cell cross-reactivity via molecular mimicry. Am J Infect Dis, 2008. 4(1): p. 85-91.
    31. Lai, Y.C., et al., Antibodies against modified NS1 wing domain peptide protect against dengue virus infection. Sci Rep, 2017. 7(1): 6975.
    32. Beatty, P.R., et al., Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination. Sci Transl Med, 2015. 7(304): 304ra141
    33. Falgout, B., et al., Evidence that flavivirus NS1-NS2A cleavage is mediated by a membrane-bound host protease in the endoplasmic reticulum. J Virol, 1995. 69(11): p. 7232-43.
    34. Xie, X., et al., Membrane topology and function of dengue virus NS2A protein. J Virol, 2013. 87(8): p. 4609-22.
    35. Xie, X., et al., Dengue NS2A protein orchestrates virus assembly. Cell Host Microbe, 2019. 26(5): p. 606-22.e8.
    36. Yusof, R., et al., Purified NS2B-NS3 serine protease of dengue virus type 2 exhibits cofactor NS2B dependence for cleavage of substrates with dibasic amino acids in vitro. J Biol Chem, 2000. 275(14): p. 9963-9.
    37. Lin, K.H., et al., Dengue virus NS2B/NS3 protease inhibitors exploiting the prime side. J Virol, 2017. 91(10): p. e00045-17
    38. Bera, A.K., et al., Functional characterization of cis and trans activity of the Flavivirus NS2B-NS3 protease. J Biol Chem, 2007. 282(17): p. 12883-92.
    39. Aguirre, S., et al., Dengue virus NS2B protein targets cGAS for degradation and prevents mitochondrial DNA sensing during infection. Nat Microbiol, 2017. 2: 17037.
    40. Luo, D., et al., Crystal structure of the NS3 protease-helicase from dengue virus. J Virol, 2008. 82(1): p. 173-83.
    41. Xu, T., et al., Structure of the Dengue virus helicase/nucleoside triphosphatase catalytic domain at a resolution of 2.4 A. J Virol, 2005. 79(16): p. 10278-88.
    42. Luo, D., et al., Insights into RNA unwinding and ATP hydrolysis by the flavivirus NS3 protein. EMBO J, 2008. 27(23): p. 3209-19.
    43. Silva, E.M., et al., Dengue virus nonstructural 3 protein interacts directly with human glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and reduces its glycolytic activity. Sci Rep, 2019. 9(1): 2651.
    44. Nemesio, H., et al., NS4A and NS4B proteins from dengue virus: membranotropic regions. Biochim Biophys Acta, 2012. 1818(11): p. 2818-30.
    45. McLean, J.E., et al., Flavivirus NS4A-induced autophagy protects cells against death and enhances virus replication. J Biol Chem, 2011. 286(25): p. 22147-59.
    46. El Sahili, A., et al., Dengue virus non-structural protein 5. Viruses, 2017. 9(4): 91
    47. De Maio, F.A., et al., The dengue virus NS5 protein intrudes in the cellular spliceosome and modulates splicing. PLoS Pathog, 2016. 12(8): p. e1005841.
    48. Ashour, J., et al., NS5 of dengue virus mediates STAT2 binding and degradation. J Virol, 2009. 83(11): p. 5408-18.
    49. Guzman, M.G., et al., Dengue infection. Nat Rev Dis Primers, 2016. 2: 16055.
    50. Srikiatkhachorn, A., et al., Dengue--how best to classify it. Clin Infect Dis, 2011. 53(6): p. 563-7.
    51. Marchi R., et al., Fibrin formation and lysis studies in dengue virus infection. Blood Coagul Fibrinolysis, 2009. 20(7): p. 575-82.
    52. Whitehorn, J., et al., Dengue. Br Med Bull, 2010. 95: p. 161-73.
    53. Torres, E.M., Dengue. Estud av, 2008. 22(64): p. 33-52.
    54. Martina, B.E., et al., Dengue virus pathogenesis: an integrated view. Clin Microbiol Rev, 2009. 22(4): p. 564-81.
    55. Limon-Flores, A.Y., et al., Dengue virus inoculation to human skin explants-an effective approach to assess in situ the early infection and the effects on cutaneous dendritic cells. Int J Exp Pathol, 2005. 86(5): p. 323-334.
    56. Balsitis, S.J., et al., Tropism of dengue virus in mice and humans defined by viral nonstructural protein 3-specific immunostaining. Am J Trop Med Hyg, 2009. 80(3): p. 416-424.
    57. Basílio-de-Oliveira, C., et al., Pathologic study of a fatal case of dengue-3 virus infection in Rio de Janeiro, Brazil. Braz J Infect Dis, 2005. 9(4): p. 341-347.
    58. Guzman, A., et al., Update on the global spread of dengue. Int J Antimicrob Agents, 2010. 36 Suppl 1: p. S40-2.
    59. Vaughn, D.W., et al., Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infect Dis, 2000. 181(1): p. 2-9.
    60. Cologna, R., et al., American genotype structures decrease dengue virus output from human monocytes and dendritic cells. J Virol, 2003. 77(7): p. 3929-38.
    61. Leitmeyer, K.C., et al., Dengue virus structural differences that correlate with pathogenesis. J Virol, 1999. 73(6): p. 4738-47.
    62. Halstead, S.B., Neutralization and antibody-dependent enhancement of dengue viruses. Adv Virus Res, 2003. 60: p. 421-67.
    63. Anderson, R., et al., Activation of endothelial cells via antibody-enhanced dengue virus infection of peripheral blood monocytes. J Virol, 1997. 71(6): p. 4226-32.
    64. King, C.A., et al., Dengue virus selectively induces human mast cell chemokine production. J Virol, 2002. 76(16): p. 8408-19.
    65. Brown, M.G., et al., A dominant role for FcgammaRII in antibody-enhanced dengue virus infection of human mast cells and associated CCL5 release. J Leukoc Biol, 2006. 80(6): p. 1242-50.
    66. Selin, L.K., et al., Protective heterologous antiviral immunity and enhanced immunopathogenesis mediated by memory T cell populations. J Exp Med, 1998. 188(9): p. 1705-15.
    67. Mangada, M.M., et al., Altered cytokine responses of dengue-specific CD4+ T cells to heterologous serotypes. J Immunol, 2005. 175(4): p. 2676-83.
    68. Hatch, S., et al., Intracellular cytokine production by dengue virus-specific T cells correlates with subclinical secondary infection. J Infect Dis, 2011. 203(9): p. 1282-91.
    69. Screaton, G., et al., New insights into the immunopathology and control of dengue virus infection. Nat Rev Immunol, 2015. 15(12): p. 745-59.
    70. Bozza, F.A., et al., Multiplex cytokine profile from dengue patients: MIP-1beta and IFN-gamma as predictive factors for severity. BMC Infect Dis, 2008. 8: 86.
    71. Chuang, Y.C., et al., Macrophage migration inhibitory factor induced by dengue virus infection increases vascular permeability. Cytokine, 2011. 54(2): p. 222-31.
    72. Rothman, A.L., et al., Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nat Rev Immunol, 2011. 11(8): p. 532-43.
    73. Wan, S.W., et al., Autoimmunity in dengue pathogenesis. J Formos Med Assoc, 2013. 112(1): p. 3-11.
    74. Huang, Y.H., et al., Antibodies against dengue virus E protein peptide bind to human plasminogen and inhibit plasmin activity. Clin Exp Immunol, 1997. 110(1): p. 35-40.
    75. Lin. C.F., et al., Generation of IgM anti-platelet autoantibody in dengue. J Med Virol, 2001. 63(2): p. 143-149.
    76. Chen, M.C., et al., Deletion of the C-terminal region of dengue virus nonstructural protein 1 (NS1) abolishes anti-NS1-mediated platelet dysfunction and bleeding tendency. J Immunol, 2009. 183(3): p. 1797-803.
    77. Chuang, Y.C., et al., Dengue virus-induced autoantibodies bind to plasminogen and enhance its activation. J Immunol, 2011. 187(12): p. 6483-90.
    78. Shaio, M.F., et al., Complement pathway activity in serum from patients with classical dengue fever. Trans R Soc Trop Med Hyg , 1992. 86(6): p. 672-5.
    79. Panisadee Avirutnan., et al., Vascular leakage in severe dengue virus infections: A potential role for the nonstructural viral protein NS1 and complement. J Infect Dis, 2006. 193: p. 1078-88.
    80. Coffey, L.L., et al., Human genetic determinants of dengue virus susceptibility. Microbes Infect, 2009. 11(2): p. 143-56.
    81. Chu, Y.T., et al., Antibodies against nonstructural protein 1 protect mice from dengue virus-induced mast cell activation. Lab Invest, 2017. 97: p. 602-14
    82. St John, A.L., et al., Influence of mast cells on dengue protective immunity and immune pathology. PLoS Pathog, 2013. 9(12): p. e1003783.
    83. Kunder, C.A., et al., Mast cell modulation of the vascular and lymphatic endothelium. Blood, 2011. 118(20): p. 5383-93.
    84. Zompi, S., et al., Animal models of dengue virus infection. Viruses, 2012. 4(1): p. 62-82.
    85. Rodriguez-Madoz, J.R., et al., Dengue virus inhibits the production of type I interferon in primary human dendritic cells. J Virol, 2010. 84(9): p. 4845-50.
    86. Aguirre, S., et al., DENV inhibits type I IFN production in infected cells by cleaving human STING. PLoS Pathog, 2012. 8(10): p. e1002934.
    87. Yu, C.Y., et al., Dengue virus targets the adaptor protein MITA to subvert host innate immunity. PLoS Pathog, 2012. 8(6): p. e1002780.
    88. Shresta, S., et al., Interferon-dependent immunity is essential for resistance to primary dengue virus infection in mice, whereas T- and B-cell-dependent immunity are less critical. J Virol, 2004. 78(6): p. 2701-10.
    89. Ashour, J., et al., Mouse STAT2 restricts early dengue virus replication. Cell Host Microbe, 2010. 8(5): p. 410-21.
    90. Koraka, P., et al., Characterization of humoral and cellular immune responses in cynomolgus macaques upon primary and subsequent heterologous infections with dengue viruses. Microbes Infect, 2007. 9(8): p. 940-6.
    91. Stabell, A.C., et al., Dengue viruses cleave STING in humans but not in nonhuman primates, their presumed natural reservoir. Elife, 2018. 7: p. e31919
    92. Brady, O.J., et al., Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl Trop Dis, 2012. 6(8): p. e1760.
    93. Shepard, D.S., et al., Economic and disease burden of dengue in Southeast Asia. PLoS Negl Trop Dis, 2013. 7(2): p. e2055.
    94. Shepard, D.S., et al., Economic impact of dengue illness in the Americas. Am J Trop Med Hyg, 2011. 84(2): p. 200-7.
    95. Pang, E.L., et al., Towards development of a universal dengue vaccine - How close are we? Asian Pac J Trop Med, 2017. 10(3): p. 220-8.
    96. Guy, B., et al., Development of sanofi pasteur tetravalent dengue vaccine. Hum Vaccin, 2014. 6(9): p. 696-705.
    97. Samantha Brandler., et al, Replication of chimeric yellow fever virus-dengue serotype 1-4 virus vaccine strains in dendritic and hepatic cells. Am J Trop Med Hyg, 2005. 72(1): p. 74-81.
    98. Florence Deauvieau , V.S., et al., Innate immune responses in human dendritic cells upon infection by chimeric yellow-fever dengue vaccine serotypes 1-4. Am J Trop Med Hyg, 2007. 76(1): p. 144-54.
    99. Flasche, S., et al., Estimating the proportion of vaccine-induced hospitalized dengue cases among Dengvaxia vaccinees in the Philippines. Wellcome Open Res, 2019. 4: 165.
    100. Halstead, S.B., et al., Identifying protective dengue vaccines: guide to mastering an empirical process. Vaccine, 2013. 31(41): p. 4501-7.
    101. Bruno Guy., et al., Evaluation of interferences between dengue vaccine serotypes in a monkey model. Am J Trop Med Hyg, 2009. 80(2): p. 302-11.
    102. Flipse, J., et al., The complexity of a dengue vaccine: A review of the human antibody response. PLoS Negl Trop Dis, 2015. 9(6): p. e0003749.
    103. Amorim, J.H., et al., Protective immunity to DENV2 after immunization with a recombinant NS1 protein using a genetically detoxified heat-labile toxin as an adjuvant. Vaccine, 2012. 30(5): p. 837-45.
    104. WHO, Background paper on dengue vaccine. 2016.
    105. Maíra Aguiar, N.S., et al., Dengvaxia efficacy dependency on serostatus - A closer look at more recent data. Clin Infect Dis, 2018. 66(4): p. 641-2.
    106. WHO, Background paper on dengue vaccine-revision to the background from 2016. 2018.
    107. Whitehead, S.S., et al., Development of TV003/TV005, a single dose, highly immunogenic live attenuated dengue vaccine; what makes this vaccine different from the Sanofi-Pasteur CYD vaccine? Expert Rev Vaccines, 2016. 15(4): p. 509-17.
    108. Whitehead, S.S., et al., In a randomized trial, the live attenuated tetravalent dengue vaccine TV003 is well-tolerated and highly immunogenic in subjects with flavivirus exposure prior to vaccination. PLoS Negl Trop Dis, 2017. 11(5): p. e0005584.
    109. Kirkpatrick, B.D., et al., The live attenuated dengue vaccine TV003 elicits complete protection against dengue in a human challenge model. Sci Transl Med, 2016. 8(330): 330ra36
    110. Huang, C.Y., et al., Genetic and phenotypic characterization of manufacturing seeds for a tetravalent dengue vaccine (DENVax). PLoS Negl Trop Dis, 2013. 7(5): p. e2243.
    111. Osorio, J.E., et al., Development of a recombinant, chimeric tetravalent dengue vaccine candidate. Vaccine, 2015. 33(50): p. 7112-20.
    112. Rupp, R., et al., Safety and immunogenicity of different doses and schedules of a live attenuated tetravalent dengue vaccine (TDV) in healthy adults: A Phase 1b randomized study. Vaccine, 2015. 33(46): p. 6351-9.
    113. Biswal, S., et al., Efficacy of a tetravalent dengue vaccine in healthy children and adolescents. N Engl J Med, 2019. 381(21): p. 2009-19.
    114. Halstead, S.B., Dengue. Lancet, 2007. 370(9599): p. 1644-52.
    115. Simmons, M., et al., Short report- antibody responses of mice immunized with a tetravalent dengue recombinant protein subunit vaccine. Am J Trop Med Hyg, 2001. 65(2): p. 159-61.
    116. Leng, C.H., et al., A novel dengue vaccine candidate that induces cross-neutralizing antibodies and memory immunity. Microbes Infect, 2009. 11(2): p. 288-95.
    117. Chen, H.W., et al., A consensus envelope protein domain III can induce neutralizing antibody responses against serotype 2 of dengue virus in non-human primates. Arch Virol, 2013. 158(7): p. 1523-31.
    118. Malavige, G.N., et al., Pathogenesis of vascular leak in dengue virus infection. Immunology, 2017. 151(3): p. 261-9.
    119. Hertz, T., et al., Antibody epitopes identified in critical regions of dengue virus nonstructural 1 protein in mouse vaccination and natural human infections. J Immunol, 2017. 198(10): p. 4025-35.
    120. Guy, B., et al., The perfect mix: recent progress in adjuvant research. Nat Rev Microbiol, 2007. 5(7): p. 505-17.
    121. Harandi, A.M., et al., Vaccine adjuvants: a priority for vaccine research. Vaccine, 2010. 28(12): p. 2363-6.
    122. Costa, S.M., et al., Induction of a protective response in mice by the dengue virus NS3 protein using DNA vaccines. PLoS One, 2011. 6(10): p. e25685.
    123. Ramirez, R., et al., Recombinant dengue 2 virus NS3 protein conserves structural antigenic and immunological properties relevant for dengue vaccine design. Virus Genes, 2014. 49(2): p. 185-95.
    124. Mamat, U., et al., Detoxifying Escherichia coli for endotoxin-free production of recombinant proteins. Microb Cell Fact, 2015. 14: 57.
    125. Nijland, R., et al., Recognition of LPS by TLR4: Potential for anti-inflammatory therapies. Marine Drugs, 2014. 12(7): p. 4260-73.
    126. Mack, L., et al., Endotoxin depletion of recombinant protein preparations through their preferential binding to histidine tags. Anal Biochem, 2014. 466: p. 83-8.
    127. Ting Du., et al., A bacterial expression plateform for production of therapeutic proteins containing human-like O-linked glycans. Cell Chem Biol, 2019. 26(2): p. 203-12.e5
    128. Wan, S.W., et al., Protection against dengue virus infection in mice by administration of antibodies against modified nonstructural protein 1. PLoS One, 2014. 9(3): p. e92495.
    129. Kao, Y.S., et al., Combination of modified NS1 and NS3 as a novel vaccine strategy against dengue virus infection. J Immunol, 2019. 203(7): p. 1909-17.
    130. Bunch, T.A., et al., Characterization and use of the Drosophila metallothionein promoter in cultured Drosophila melanogaster cells. Nucleic Acids Res, 1988. 16(3): p. 1043-61.
    131. Phase III trial to evaluate efficacy and safety of a tetravalent dengue vaccine, 2020. https://ClinicalTrials.gov/show/NCT02406729.
    132. Normile, D., et al., Safety concerns derail dengue vaccination program. Science, 2017. 358(6370): p. 1514-5.
    133. Klein, D.E., et al., Structure of a dengue virus envelope protein late-stage fusion intermediate. J Virol, 2013. 87(4): p. 2287-93.
    134. Herteleer, L., et al., Mood stabilizing drugs regulate transcription of immune, neuronal and metabolic pathway genes in Drosophila. Psychopharmacology (Berl), 2016. 233(9): p. 1751-62.
    135. Schmidt, T.G., et al., Development of the Twin-Strep-tag® and its application for purification of recombinant proteins from cell culture supernatants. Protein Expr Purif, 2013. 92(1): p. 54-61.
    136. Zellweger, R.M., et al., CD8+ T cells can mediate short-term protection against heterotypic dengue virus reinfection in mice. J Virol, 2015. 89(12): p. 6494-505.
    137. Zellweger, R.M., et al., CD8+ T cells prevent antigen-induced antibody-dependent enhancement of dengue disease in mice. J Immunol, 2014. 193(8): p. 4117-24.

    下載圖示 校內:2025-08-25公開
    校外:2025-08-25公開
    QR CODE