簡易檢索 / 詳目顯示

研究生: 林明暉
Lin, Ming-Hui
論文名稱: 奈米銀線陣列的表面電漿傳輸特性量測
The Measurement of Surface Plasmonic Transport on Silver Nanowires Arrays
指導教授: 崔祥辰
Chui, Hsiang-Chen
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 61
中文關鍵詞: 陽極氧化鋁電漿子
外文關鍵詞: anodic aluminum oxide, silver, plasmons
相關次數: 點閱:91下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 陽極氧化鋁因為具有奈米等級、孔洞規則性排列、等向性均勻結構等特性被運用在各種金屬材質的奈米線製程,包括已被廣泛運用來增強量測樣品訊號的表面增強拉曼散射效應,而近來人們發現利用奈米金屬顆粒嵌入在陽極氧化鋁膜裡,出現一些有趣的光學性質,如負向折射率,異常性穿透率等等。
    我們利用二次陽極氧化技術,以及選定電解液,成功製作出平均約100 nm孔洞空間分佈的氧化鋁孔洞陣列,並且利用不同的參數控制,達到不同孔洞空間分佈的條件,以符合後續實驗目的。並且後續使用交流電電化學方法在孔洞內沈積銀奈米顆粒,量測並觀察在不同長度下其薄膜的光學特性。
    在反射率量測結果顯示反射率範圍大約在5%至10%左右,但是在近紫外光波段約350 nm左右看到了明顯的激發波峰,推測為表面電漿共振效應,而在穿透率的方面則明顯看出在可見光波段的穿透率呈現非常低的穿透率,且在波段325 nm左右有一波峰形成如光通道的效應,吸收率方面可以看出在波段440 nm左右是表面電漿共振效應的強吸收位置,且波峰的寬度隨著銀奈米顆粒沉積厚度增加而有增寬現象。再來利用架設的倒立式顯微鏡光學量測系統測量了嵌入於薄膜中的銀線所形成的金屬介電複合材料的銀奈米線陣列的電漿傳播特性,得到以間距40 nm週期性排列之半徑約60 nm的銀奈米線陣列其傳播距離,之後並利用研磨器具得到更為平整的銀/氧化鋁金屬介電複合材料,改善量測得到的數據標準差降低了70%左右。

    This thesis first introduces the foundation information of the anodic aluminum oxide (AAO) including the development history and the chemical formation phenomena of the porous hexagonally honeycomb alumina structures and the improved process to form well-spacing porous alumina nanochannels, which can embed the silver particles by electrodeposition in subsequent exam. We first use two-step anodization to improve the uniform of AAO structure. We also describe the diameter change and pore distribution of porous alumina channels under different parameter. Secondly we measure and show the various particular properties of porous AAO film such as the penetration, the reflection, and the absorption spectra. We import the conceptions of surface plasmons and plasmonics which have been very lively discussed in recent years. Plasmonics is a new field in nanotechnology for the property of being able to transmit electromagnetic wave under the optical diffraction limit. Finally, we use optical system to measure the propagation lengths of Ag/AAO film to observe the possibility of strong interaction between silver nanowires that can enhance the propagating surface plasmons wave. The propagation length is 2 μm, this can offer a reference if the Ag/AAO film is used to as a remote transport application. Additionally, we also level the Ag/AAO film to improve the non-uniform emission intensities due to different nanowire lengths by manually grinding and polishing.

    List of Contents 論文摘要 I Abstract II 致謝 III List of Contents IV List of Tables VI List of Figures VI Chapter 1 Introductions 1 1-1. Motivation 1 1-2. Background Review 1 1-3. Frameworks of Thesis 5 Chapter 2 Theoretical Background and Experimental setup 7 2-1. Anodic Aluminum Oxide 7 2-1.1. Introduction 7 2-1.2. Electrochemical Polishing 7 2-1.3. Anodic Aluminum Oxide (AAO) 9 2-1.4. Silver Nanoparticles Electrodeposition 14 2-2. The Optical Properties of Metal Dielectric Materials 16 2-2.1. Principle of Optical Scattering and Antireflection 16 2-2.2. Optical Properties of Anodic Aluminum Oxide 17 2-2.3. Plasmonics Properties of Silver Nanowires 20 2-2.4. Related Researches of Plasmonics for Anodic Aluminum Oxide 24 Chapter 3 Experimental Process 26 3-1. Fabrication of Ag/AAO Film 26 3-2. Anodic Aluminum Oxide 27 3-3. Pore Widening 29 3-4. Electrodeposition of Ag Nanoparticles 30 3-5. Removal of Aluminum 32 3-6. Silver Nanowires Length 33 3-7. Optical Experimental Set up 34 3-8. Manually Grinding and Polishing 36 Chapter 4 Data Analysis and Results 38 4-1. The Experimental Results 38 4-2. The Measurement of Optical Properties 43 4-2.1. The Optical Properties of Anodic Aluminum Oxide with/without silver particles 43 4-2.2. The Measurement of Propagation Length 50 Chapter 5 Conclusion and Future Improvement 57 5-1. Conclusion 57 5-2. Future Improvement 58 Reference 59

    1. S. J. Lee and M. Moskovits, "Remote Sensing by Plasmonic Transport," J Am Chem Soc 134, 11384-11387 (2012).
    2. R. Kolesov, B. Grotz, G. Balasubramanian, R. J. Stohr, A. A. L. Nicolet, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, "Wave-particle duality of single surface plasmon polaritons," Nat Phys 5, 470-474 (2009).
    3. S. Lal, J. H. Hafner, N. J. Halas, S. Link, and P. Nordlander, "Noble Metal Nanowires: From Plasmon Waveguides to Passive and Active Devices," Accounts Chem Res 45, 1887-1895 (2012).
    4. R. L. Zong, J. Zhou, Q. Li, B. Du, B. Li, M. Fu, X. W. Qi, L. T. Li, and S. Buddhudu, "Synthesis and optical properties of silver nanowire arrays embedded in anodic alumina membrane," J Phys Chem B 108, 16713-16716 (2004).
    5. F. Y. Li, L. Zhang, and R. M. Metzger, "On the growth of highly ordered pores in anodized aluminum oxide," Chem Mater 10, 2470-2480 (1998).
    6. D. Landolt, "Fundamental-Aspects of Electropolishing," Electrochim Acta 32, 1-11 (1987).
    7. J. F. Nicholas and W. J. M. Tegart, "Contribution to the Theory of Electropolishing," J Electrochem Soc 102, C93-C94 (1955).
    8. C. Wagner, "Contribution to the Theory of Electropolishing," J Electrochem Soc 101, 225-228 (1954).
    9. H. Masuda and M. Satoh, "Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask," Jpn J Appl Phys 2 35, L126-L129 (1996).
    10. H. Masuda and K. Fukuda, "Ordered Metal Nanohole Arrays Made by a 2-Step Replication of Honeycomb Structures of Anodic Alumina," Science 268, 1466-1468 (1995).
    11. F. Keller, M. S. Hunter, and D. L. Robinson, "Structural Features of Oxide Coatings on Aluminium," J Electrochem Soc 100, 411-419 (1953).
    12. T. P. Hoar, "Influence of Strain and Straining on Anode Reactivity," J Electrochem Soc 110, C61-C61 (1963).
    13. C. E. Michelson and J. F. Murphy, "An Infrared Study of the Hydration of Anodic Coatings on Aluminum," J Electrochem Soc 109, C199-C199 (1962).
    14. C. E. Michelson and J. F. Murphy, "A Radiotracer Study of Sulfate Ion Behavior in Aluminum Anodic Coatings," J Electrochem Soc 109, C199-C199 (1962).
    15. V. P. Parkhutik and V. I. Shershulsky, "Theoretical Modeling of Porous Oxide-Growth on Aluminum," J Phys D Appl Phys 25, 1258-1263 (1992).
    16. S. Shingubara, O. Okino, Y. Sayama, H. Sakaue, and T. Takahagi, "Ordered two-dimensional nanowire array formation using self-organized nanoholes of anodically oxidized aluminum," Jpn J Appl Phys 1 36, 7791-7795 (1997).
    17. A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, "Polycrystalline nanopore arrays with hexagonal ordering on aluminum," J Vac Sci Technol A 17, 1428-1431 (1999).
    18. H. Masuda, H. Tanaka, and N. Baba, "Preparation of Porous Material by Replacing Microstructure of Anodic Alumina Film with Metal," Chem Lett, 621-622 (1990).
    19. H. Masuda, K. Yada, and A. Osaka, "Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution," Jpn J Appl Phys 2 37, L1340-L1342 (1998).
    20. X. Y. Sun, F. Q. Xu, Z. M. Li, and W. H. Zhang, "Cyclic voltammetry for the fabrication of high dense silver nanowire arrays with the assistance of AAO template," Mater Chem Phys 90, 69-72 (2005).
    21. J. Choi, G. Sauer, K. Nielsch, R. B. Wehrspohn, and U. Gosele, "Hexagonally arranged monodisperse silver nanowires with adjustable diameter and high aspect ratio," Chem Mater 15, 776-779 (2003).
    22. H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, "Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps," Adv Mater 18, 491-+ (2006).
    23. E. B. Grann, M. G. Moharam, and D. A. Pommet, "Artificial Uniaxial and Biaxial Dielectrics with Use of 2-Dimensional Subwavelength Binary Gratings," J Opt Soc Am A 11, 2695-2703 (1994).
    24. V. A. Bailey, "Reflection of Waves by an Inhomogeneous Medium," Phys Rev 96, 865-868 (1954).
    25. S. F. Monaco, "Reflectance of an Inhomogeneous Thin Film," J Opt Soc Am 51, 280-& (1961).
    26. M. F. Chen, H. C. Chang, A. S. P. Chang, S. Y. Lin, J. Q. Xi, and E. F. Schubert, "Design of optical path for wide-angle gradient-index antireflection coatings," Appl Optics 46, 6533-6538 (2007).
    27. D. G. Chen, "Anti-reflection (AR) coatings made by sol-gel processes: A review," Sol Energ Mat Sol C 68, 313-336 (2001).
    28. K. Huang, Y. J. Li, Z. M. Wu, C. Li, H. K. Lai, and J. Y. Kang, "Asymmetric light reflectance effect in AAO on glass," Opt Express 19, 1301-1309 (2011).
    29. H. M. Chen, C. F. Hsin, R. S. Liu, S. F. Hu, and C. Y. Huang, "Controlling optical properties of aluminum oxide using electrochemical deposition," J Electrochem Soc 154, K11-K14 (2007).
    30. M. Rycenga, C. M. Cobley, J. Zeng, W. Y. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. N. Xia, "Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications," Chem Rev 111, 3669-3712 (2011).
    31. S. Link and M. A. El-Sayed, "Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals," Int Rev Phys Chem 19, 409-453 (2000).
    32. Z. P. Li, K. Bao, Y. R. Fang, Y. Z. Huang, P. Nordlander, and H. X. Xu, "Correlation between Incident and Emission Polarization in Nanowire Surface Plasmon Waveguides," Nano Lett 10, 1831-1835 (2010).
    33. P. R. Evans, R. Kullock, W. R. Hendren, R. Atkinson, R. J. Pollard, and L. M. Eng, "Optical transmission properties and electric field distribution of interacting 2D silver nanorod Arrays," Adv Funct Mater 18, 1075-1079 (2008).
    34. R. L. Zong, J. Zhou, B. Li, M. Fu, S. K. Shi, and L. T. Li, "Optical properties of transparent copper nanorod and nanowire arrays embedded in anodic alumina oxide," J Chem Phys 123(2005).
    35. H. Masuda, M. Yotsuya, and M. Ishida, "Spatially selective metal deposition into a hole-array structure of anodic porous alumina using a microelectrode," Jpn J Appl Phys 2 37, L1090-L1092 (1998).
    36. K. Nielsch, F. Muller, A. P. Li, and U. Gosele, "Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition," Adv Mater 12, 582-586 (2000).
    37. Y. R. Fang, H. Wei, F. Hao, P. Nordlander, and H. X. Xu, "Remote-Excitation Surface-Enhanced Raman Scattering Using Propagating Ag Nanowire Plasmons," Nano Lett 9, 2049-2053 (2009).
    38. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
    39. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, "Silver nanowires as surface plasmon resonators," Phys Rev Lett 95(2005).
    40. G. H. Li, Y. Zhang, Y. C. Wu, and L. D. Zhang, "Wavelength dependent photoluminescence of anodic alumina membranes," J Phys-Condens Mat 15, 8663-8671 (2003).

    下載圖示 校內:2019-09-11公開
    校外:2019-09-11公開
    QR CODE