| 研究生: |
曾毅豪 Tseng, Yi-Hao |
|---|---|
| 論文名稱: |
關聯結構在金融市場風險管理之研究 Copulas for Risk Management in Financial Market |
| 指導教授: |
黃銘欽
Huang, Min-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 統計學系 Department of Statistics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 穩定分配 、高狹峰 、CML 、關聯結構 、風險值 、IFM 、Kendall’s tau |
| 外文關鍵詞: | Kendall’s tau, CML, IFM, Leptokurtosis, Stable distribution, Copula, Value-at-Risk |
| 相關次數: | 點閱:180 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究關聯結構(Copulas)以及對金融資產報酬間之關聯性建模,並探討在投資組合報酬風險值之應用。文中以五種不同關聯結構描述歷史資料,再由關聯結構、常態模型模擬之風險值與歷史資料所得之風險值進行比較。我們將其理論方法應用於兩種複合型指數歷史資料,分別利用Kendall’s tau、IFM與CML方法估計關聯結構模型。模擬結果顯示,關聯結構能充份反應金融資料所具有高狹峰與厚尾的特性。在較高信賴水準下,由關聯結構模型模擬所得之風險值,其表現比常態模型佳。在信賴水準為90%與95%之間,以穩定分配為邊際之關聯結構模型有較佳的風險值估計值。若信賴水準高於97.5%,則以t分配為邊際之關聯結構模型較為適當,而以穩定分配為邊際者表現過於保守。最後,我們採用有母數與無母數方法選取合適之關聯結構模型。
This thesis studies the copula-based method to model relationship of financial asset returns and calculate the value-at-risk (VaR) of portfolio returns. Five candidate copulas are used to fit the empirical data, and the comparisons of the simulated VaR by copula-based and normal models to the empirical VaR are made. We apply the methodology to an empirical data set composed of two composite indexes, and estimate copulas using the nonparametric Kendall’s tau estimator, IFM and CML methods. The simulation results indicate that the copula-based model is capable of capturing the leptokurtosis inherent in financial data. The copula-based VaR gives more accurate approximation than the normal-based VaR for larger confidence level. Furthermore, copulas with stable margins produce reasonable 90% and 95% VaR estimates. Copulas with Student-t margins are more appropriate under a larger confidence level, e.g. 99% or 99.5%, where copulas with stable margins are too conservative. Finally, for selecting an appropriate copula we use parametric and nonparametric approach to implement the model selection.
References
[1] Aas, K. (2004). Modelling the Dependence Structure of Financial Assets: A Survey of Four Copulas. Research report SAMBA/22/04, Norwegian Computer Center.
[2] Blattberg, R. C. and Gonedes, N. J. (1974). A Comparison of the Stable and Student Distributions as Statistical Models for Stock Prices. Journal of Business, 47, 244-280.
[3] Bouyé, E., Durrleman, V., Bikeghbali, A., Riboulet, G. and Rconcalli, T. (2000). Copulas for Finance – A Reading Guide and Some Application. Working paper, Groupe de Recherche Opérationelle, Crédit Lyonnais, Paris, France.
[4] Cherubini, U., Luciano, E. and Vecchiato, W. (2004). Copula Methods in Finance. Wieley, Chichester.
[5] Demarta, S. and McNeil, A. J. (2004). The t Copula and Related Copulas. Technical report, ETH Zurich.
[6] Durrleman, V., Nikeghbali, A. and Rconcalli, T. (2000). Which Copula is the Right One? Working paper, Goupe de Recherche Opérationelle, Crédit Lyonnais.
[7] Embrechts, P., Lindskog, F. and McNeil, A. J. (2003). Modelling Dependence with Copulas and Applications to Risk Management. In: Rachev, S.T. (Ed.), Handbook of Heavy Tailed Distribution in Finance, pp. 329-384. Elsevier.
[8] Embrechts, P., McNeil, A. J. and Straumann, D. (1999). Correlation: Pitfalls and Alternatives. Risk, 12, 69-71.
[9] Embrechts, P., McNeil, A. J. and Straumann, D. (2000). Correlation and dependency in risk management: Properties and pitfalls. In: Dempster, M. (Ed.), Risk Management: Value at Risk and Beyond, pp. 176-223. Cambridge University Press, UK.
[10] Escarela, G. and Carriére, J. F. (2003). Fitting Competing Risks with an Assumed Copula. Statistical Method in Medical Research, 12, 333-349.
[11] Fama, E. F. (1965). The Behavior of Stock Market Prices. Journal of Business, 38, 34-105.
[12] Fermanian, J.D. (2005). Goodness-of-Fit Tests for Copulas. Journal of Multivariate Analysis, 95, 119-152.
[13] Frank, M. J. (1979). On the Simultaneous Associativity of F(x, y) and x + y − F(x, y). Aequationes Mathematicae, 19, 194-226.
[14] Frees, E. W., Carriére, J. and Valdez, E. A. (1996). Annuity Valuation with Dependent Mortality. The Journal of Risk and Insurance, 63, 229-261.
[15] Frees, E. W. and Valdez, E. A. (1998). Understanding Relationships Using Copulas. North American Actuarial Journal, 2, 1-25.
[16] Frees, E. W. and Wang, P. (2005). Credibility Using Copulas. North American Actuarial Journal, 9, 31-48.
[17] Genest, C. and Favre, A. C. (2007). Everything You Always Wanted to Know About Copula Modeling But Were Afraid to Ask. Journal of Hydrologic Engineering, 12, in press.
[18] Genest, C., Ghoudi, K. and Rivest, L.-P. (1995). A Semiparametric Estimation Procedure of Dependence Parameters in Multivariate Families of Distributions. Biometrika, 82, 543-552.
[19] Genest, C. and MacKay, J. (1986b). The Joy of Copulas: Bivariate Distribution with Uniform Marginals. The American Statistician, 40, 280-283.
[20] Genest, C. and Rivest, L.-P. (1993). Statistical Inference Procedures for Bivariate Archimedean Copulas. Journal of the American Statistical Association, 88, 1034-1043.
[21] Jansons, V., Kozlovskis, K. and Lace, N. (2005). Portfolio Modeling Using the Theory of Copula in Latvian and American Equity Market. Faculty of Engineering Economics, Riga Technical University.
[22] Joe, H. (1997). Multivariate Models and Dependence Concepts, volume 73 of Monographs on Statistics and Applied Probability. Chapman & Hall, London.
[23] Joe, H. and Xu, J. (1996). The Estimation Method of Inference Functions for Margins for Multivariate Models. Technical Report 166, Department of Statistics, University of British Columbia.
[24] Kole, E., Koedijk, K. and Verbeek, M. (2006). Selecting Copulas for Risk Management. Journal of Banking & Finance, forthcoming.
[25] Kon, S. (1984). Models of Stock Returns – A Comparison. Journal of Finance, 39, 147-165.
[26] Lindskog, F., McNeil, A. and Schmock, U. (2001). A Note on Kendall’s tau for Elliptical Distributions. ETH preprint.
[27] Mandelbort, B. B. (1963). The Variation of Certain Speculative Prices. Journal of Business, 36, 394-419.
[28] Marshall, A. W. and Olkin, I. (1988). Families of Multivariate Distributions. Journal of the American Statistical Association, 83, 834-841.
[29] Mashal, R. and Zeevi, A. (2002). Beyond correlation: Extreme Co-movements Between Financial Assets. Technical report, Columbia University.
[30] McNeil, A. J., Frey, R. and Embrechts, P. (2005). Quantitative Risk Management: Concepts, Techniques and Tools. Princeton University Press.
[31] Nelsen, R. B. (2006). An Introduction to Copulas, volume 139 of Lecture Notes in Statistics, 2nd ed. Springer Verlag. Berlin Heidelberg New York.
[32] Nolan, J. P. (1997). Numerical Calculation of Stable Densities and Distribution Functions. Commun. Statist. -Stochastic Models, 13, 759-774.
[33] Nolan, J. P. (2001a). Maximum Likelihood Estimation of Stable Parameters. In Barndorff-Nielsen, O. E., Mikosch, T. and Resnick, S. I. (Eds.), Lévy Processes: Theory and Applications, pp. 379-400. Boston: BirkhÄauser.
[34] Nolan, J. P. (2007b). Stable Distributions - Models for Heavy Tailed Data. Boston: BirkhÄauser. In progress, Chapter 1 online at academic2.american.edu/~jpnolan.
[35] Ojeda, D. (2001). Comparison of Stable Estimates, Ph.D Thesis, Department of Mathematics and Statistics, American University.
[36] Rachev, S. T., Menn, C. and Fabozzi, F. J. (2005). Fat-tailed and Skewed Asset Return Distributions: Implications for Risk Management, Portfolio Selection, and Option Pricing. John Wiley & Sons.
[37] Romano, C. (2002). Calibrating and Simulating Copula Functions: An Application to the Italian Stock Market. Working paper n. 12, CIDEM.
[38] Schmidt, T. (2006). Coping with Copulas. In: Rank, J. (Ed.), Copulas – From Theory to Application in Finance, pp. 329-384.
[39] Schoutens, W. (2003). Lévy Processes in Finance. Wiley Series in Probability and Statistics. John Wiley & Sons, England.
[40] Schweuser, B. and Wolff, E. (1981). On nonparametric measures of dependence for random variables. The Annals of Statistics, 9, 879-885.
[41] Shih, J. H. and Louis, T. A. (1995). Inferences on the Association Parameter in Copula Models for Bivariate Survival Data. Biometrics, 51, 1384-1399.
[42] Sklar, A. (1959). Fonctions de répartitions à n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris, 8, 229-231.
[43] Wang, W. and Wells, M. T. (2000). Model Selection and Semiparametric Inference for Bivariate Failure-Time Data. Journal of the American Statistical Association, 95, 62-72.
[44] Yan, J. (2006). Enjoy the Joy of Copulas. Department of Statistics and Actuarial Science, University of Iowa.
[45] Yan, J. (2006b). Multivariate Modeling with Copulas and Engineering Applications. In: Pham, H. (Ed.), Handbook in Engineering Statistics. Springer, pp.973-990.