| 研究生: |
黃祥育 Huang, Hsiang-Yu |
|---|---|
| 論文名稱: |
Lu5M6Sn18 (M = Co, Rh, Ir) 籠狀超導體之物理性質研究 Superconducting properties of caged superconductors Lu5M6Sn18 (M = Co, Rh, Ir) |
| 指導教授: |
張烈錚
Chang, Lieh-Jeng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 超導體 、籠狀化合物 |
| 外文關鍵詞: | Superconductor, cage-compounds |
| 相關次數: | 點閱:49 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於籠狀結構R5M6Sn18中因為結構的關係造成許多異常的物理特性,像是在近期R5Rh6Sn18(R = Y, Lu, Sc)系列中發現三者都屬於非一般性的超導體,且在Y5Rh6Sn18與Lu5Rh6Sn18有 time reversal symmetry breaking的現象,因而造成R5M6Sn18結構吸引了許多物理學家的關注。
在本篇論文利用錫助熔劑長晶法(Sn flux method)製成Lu5M6Sn18(M = Co, Rh, Ir)單晶,利用X光繞射(X-ray diffraction)進行結構上的分析並確認單晶的純度,接著對Lu5M6Sn18(M = Co, Rh, Ir)系列進行測量直流磁化率(DC magnetization)、電阻率(Electrical resistivity﹐ρ)、比熱(Specific heat),研究Lu5M6Sn18(M=Co, Rh, Ir)系列樣品中的物理性質。從磁化率得到了Lu5M6Sn18(M=Co, Rh, Ir)系列的超導臨界溫度(Tc)分別在1.3 K、4 K與3 K,從電阻中在超導臨界溫度之上可以看出Lu5Co6Sn18¬與Lu5Ir6Sn18是屬於金屬性(metallic),但是在Lu5Rh6Sn18中當溫度下降時電阻率卻是上升,因此Lu5Rh6Sn18為壞金屬(bad metal)或是半金屬(semimetal)其性質與Y5Rh6Sn18相似,接著超導態下擬合出Lu5M6Sn18(M=Co, Rh, Ir)系列中的臨界磁場(Hc2)分別在0.5 T、5 T與2 T。在比熱的測量上,可以發現Lu5Rh6Sn18是屬於強耦合超導體(strong coupled superconductor),但是Lu5Co6Sn18與Lu5Ir6Sn18是屬於弱耦合超導體(weakly coupled superconductors)。
Some of the interesting phenomenon, like unusual superconductivity and time reversal symmetry breaking in family of caged compounds R5M6Sn18 (R = rare earth, M = transition metal) has motivated researchers around the world to work on these materials. We have investigated the caged compounds Lu5M6Sn18 (M = Co, Rh, Ir) to study their low temperature properties using dc magnetization, specific heat and resistivity measurement techniques. We have prepared single crystals of Lu5M6Sn18 (M = Co, Rh, Ir) materials by using Sn-flux method. All three compounds show superconducting behavior below Tc ≈ 1.2 K (Co), 4 K (Rh) and 2.9 K (Ir). The heat capacity measurements reveal Lu5Rh6Sn18 is a strongly coupled superconductor, while Lu5M6Sn18 (M = Co, Ir) are weakly coupled superconductors. Resistivity measurements reveal that Lu5Co6Sn18, Lu5Ir6Sn18 show metallic behavior above Tc, however, Lu5Rh6Sn18 is characterized as a bad metal as its resistivity decreases with the increase in the temperature. The all three compounds are observed to show s-wave superconductivity with isotropic superconducting gap.
[1]J. Remeika, G. Espinosa, A. Cooper, H. Barz, J. Rowell, D. McWhan, J. Vandenberg, D. Moncton, Z. Fisk, and L. Woolf, "A new family of ternary intermetallic superconducting/magnetic stannides," Solid State Communications 34, 923 (1980).
[2]A. Bhattacharyya, D. Adroja, N. Kase, A. Hillier, J. Akimitsu, and A. Strydom, "Unconventional superconductivity in Y5Rh6Sn18 probed by muon spin relaxation," Scientific reports 5, 1 (2015).
[3]A. Bhattacharyya, D. Adroja, J. Quintanilla, A. Hillier, N. Kase, A. Strydom, and J. Akimitsu, "Broken time-reversal symmetry probed by muon spin relaxation in the caged type superconductor Lu5Rh6Sn18," Physical Review B 91, 060503 (2015).
[4]Z. Zhang, Y. Xu, C. Kuo, X. Hong, M. Wang, P. Cai, J. Dong, C. Lue, and S. Li, "Nodeless superconducting gap in the caged-type superconductors Y5Rh6Sn18 and Lu5Rh6Sn18," Superconductor Science and Technology 28, 105008 (2015).
[5]H. Hayamizu, N. Kase, and J. Akimitsu, "Superconducting Properties of Ca3T4Sn13 (T= Co, Rh, and Ir)," Journal of the Physical Society of Japan 80, SA114 (2011).
[6]N. Kase, H. Hayamizu, and J. Akimitsu, "Superconducting state in the ternary stannide superconductors R3T4Sn13 (R= La, Sr; T= Rh, Ir) with a quasiskutterudite structure," Physical Review B 83, 184509 (2011).
[7]C. Kuo, H. Liu, C. Lue, L. Wang, C. Chen, and Y. Kuo, "Characteristics of the phase transition near 147 K in Sr3Ir4Sn13," Physical Review B 89, 094520 (2014).
[8]Y. Mudryk, A. Grytsiv, P. Rogl, C. Dusek, A. Galatanu, E. Idl, H. Michor, E. Bauer, C. Godart, and D. Kaczorowski, "Physical properties and superconductivity of skutterudite-related Yb3Co4.3Sn12.7 and Yb3Co4Ge13," Journal of Physics: Condensed Matter 13, 7391 (2001).
[9]A. Rojek, C. Sułkowski, and K. Rogacki, "Superconductivity and magnetism of TmRh1.3Sn4.0 single crystals," Physica C: Superconductivity 223, 111 (1994).
[10]C. Tomy, G. Balakrishnan, and D. M. Paul, "Observation of the peak effect in the superconductor Ca3Rh4Sn13," Physical Review B 56, 8346 (1997).
[11]游子賢, "介金屬M5Rh6Sn18 (M = Sc, Y, Lu)之單晶製程及物理特性之研究," 成功大學物理學系學位論文 (2015).
[12]S. Chen and C. Lue, "A 27 l NMR study of the mixed valence compound CeFe2Al10," Physical Review B 81, 075113 (2010).
[13]C. Lue, S. Yang, A. Abhyankar, Y. Hsu, H. Hong, and Y. Kuo, "Transport, thermal, and NMR characteristics of CeRu2Al10," Physical Review B 82, 045111 (2010).
[14]C. Lue, S. Yang, T. Su, and B.-L. Young, "NMR evidence for the partially gapped state in CeOs2Al10," Physical Review B 82, 195129 (2010).
[15]Z. Hiroi, S. Yonezawa, and J.-I. Yamaura, "A second phase transition and superconductivity of the β-pyrochlore oxide KOs2O6," Journal of Physics: Condensed Matter 19, 145283 (2007).
[16]S. Kazakov, N. Zhigadlo, M. Brühwiler, B. Batlogg, and J. Karpinski, "Synthesis of superconducting pyrochlore RbOs2O6," Superconductor Science and Technology 17, 1169 (2004).
[17]M. Bruhwiler, N. Zhigadlo, J. Karpinski, S. Kazakov, and B. Batlogg, "Superconductivity in Geometrically Frustrated Pyrochlore RbOs2O6," Phys. Rev. B 70, 020503 (2004).
[18]R. Galati, C. Simon, P. F. Henry, and M. T. Weller, "Cation displacements and the structures of the superconducting pyrochlore osmates AOs2O6 (A= K, Rb, and Cs)," Physical Review B 77, 104523 (2008).
[19]J. Chang, I. Eremin, and P. Thalmeier, "Cooper-pair formation by anharmonic rattling modes in the β-pyrochlore superconductor KOs2O6," New Journal of Physics 11, 055068 (2009).
[20]H. Von Schnering, W. Carrillo-Cabrera, R. Kröner, E.-M. Peters, K. Peters, and R. Nesper, "Crystal structure of the clathrate β-Ba8Ga16Sn30," Zeitschrift für Kristallographie-New Crystal Structures 213, 719 (1998).
[21]M. Avila, D. Huo, T. Sakata, K. Suekuni, and T. Takabatake, "Tunable charge carriers and thermoelectricity of single-crystal Ba8Ga16Sn30," Journal of Physics: Condensed Matter 18, 1585 (2006).
[22]Y.-X. Chen, B.-L. Du, Y. Saiga, K. Kajisa, and T. Takabatake, "Crystal growth and thermoelectric properties of type-VIII clathrate Ba8Ga15. 9Sn30. 1− xGex with p-type charge carriers," Journal of Physics D: Applied Physics 46, 205302 (2013).
[23]N. Kase, S. Kittaka, T. Sakakibara, and J. Akimitsu, "Superconducting gap structure of the cage compound Sc5Rh6Sn18," Journal of the Physical Society of Japan 81, SB016 (2012).
[24]N. Kase, S. Kittaka, T. Sakakibara, and J. Akimitsu, "Anisotropic superconductivity of the caged compound Y5Rh6Sn18 with unusual normal-state electrical resistivity," 015042 (2014).
[25]N. Kase, K. Inoue, H. Hayamizu, and J. Akimitsu, "Highly anisotropic gap function in a nonmagnetic superconductor Y5Rh6Sn18," (in English), Journal of the Physical Society of Japan 80, SA112 (2011).
[26]H. Padamsee, J. Neighbor, and C. Shiffman, "Quasiparticle phenomenology for thermodynamics of strong-coupling superconductors," Journal of Low Temperature Physics 12, 387 (1973).
[27]I. Vekhter, P. Hirschfeld, J. Carbotte, and E. Nicol, "Anisotropic thermodynamics of d-wave superconductors in the vortex state," Physical Review B 59, R9023 (1999).
[28]P. Miranović, N. Nakai, M. Ichioka, and K. Machida, "Orientational field dependence of low-lying excitations in the mixed state of unconventional superconductors," Physical Review B 68, 052501 (2003).
[29]P. Miranović, M. Ichioka, K. Machida, and N. Nakai, "Theory of gap-node detection by angle-resolved specific heat measurement," Journal of Physics: Condensed Matter 17, 7971 (2005).
[30]T. Sakakibara, A. Yamada, J. Custers, K. Yano, T. Tayama, H. Aoki, and K. Machida, "Nodal structures of heavy fermion superconductors probed by the specific-heat measurements in magnetic fields," Journal of the Physical Society of Japan 76, 051004 (2007).
[31]G. Volovik and L. Gor'kov, "Superconducting classes in heavy-fermion systems," in 30 Years Of The Landau Institute—Selected Papers: World Scientific (1996).
[32]C. Kittel, Introduction to solid state physics. Wiley (2005).
[33]陳逸安, "利用電性量測分析 Ga-In 之共晶系統之奈米複合材料的超導行為," 成功大學物理學系學位論文 (2015).
[34]陳柏勳, "利用交流磁化率方法研究超導奈米複合材料的物理性質," 成功大學物理學系學位論文 (2013).
[35]G. Espinosa, "Crystal growth and crystal-chemical investigation of systems containing new superconducting and/or magnetic ternary stannides," Materials Research Bulletin 15, 791 (1980).
[36]G. Espinosa, A. Cooper, and H. Barz, "Isomorphs of the superconducting/magnetic ternary stannides," Materials Research Bulletin 17, 963 (1982).
[37]J. R. Christman, J. R. Christman, J. R. Christman, J. R. Christman, and E.-U. Physicien, Fundamentals of solid state physics. Wiley New York (1988).
[38]MPMS SQUID VSM User's Manual. (Quantum Design, USA, 2009).
[39]陳思羽, "Ho2Ir2O7之磁性研究," 成功大學物理學系學位論文 (2016).
[40]D. Averin, Y. V. Nazarov, and A. Odintsov, "Incoherent tunneling of the Cooper pairs and magnetic flux quanta in ultrasmall Josephson junctions," Physica B: Condensed Matter 165, 945 (1990).
[41]Physical Property Measurement System Hardware Manual. (Quantum Design, USA, 2008).
[42]Physical Property Measurement System Heat Capacity Option User’s Manual. (Quantum Design, USA, 2004).
[43]Model 2182/2182A Nanovoltmeter User's Manual. (KEITHLEY, USA, 2004).
[44]KEITHLEY 6211 DC and AC Current Source User's Manual. (KEITHLEY, USA, 2005).
[45]D. Worledge, "Reduction of positional errors in a four point probe resistance measurement," ed: Google Patents (2005).
[46]ADVANCED HEAT CAPACITY WITH HELIUM-3. (Quantum Design, USA).
[47]PPMS® Dilution Refrigerator System. (Quantum Design, USA).
[48]X.-W. Lei, G.-H. Zhong, C.-L. Hu, and J.-G. Mao, "Syntheses and crystal structures of Y7Co6Sn23 and RE5Co6Sn18 (RE= Sc, Ho)," Journal of Alloys and Compounds 485, 124 (2009).
[49]C. Ren, Z.-S. Wang, H.-Q. Luo, H. Yang, L. Shan, and H.-H. Wen, "Evidence for two energy gaps in superconducting Ba0.6K0.4Fe2As2 single crystals and the breakdown of the Uemura plot," Physical review letters 101, 257006 (2008).
[50]H. Matsuzaki, K. Hida, N. Kase, T. Nakano, and N. Takeda, "Thermal Conductivity Measurements of Caged Structural Superconductors," Physics Procedia 81, 61 (2016).
[51]Z. Fisk and G. Webb, "Saturation of the high-temperature normal-state electrical resistivity of superconductors," Physical Review Letters 36, 1084 (1976).
[52]E. Helfand and N. Werthamer, "Temperature and purity dependence of the superconducting critical field, Hc2. II," Physical Review 147, 288 (1966).
[53]L. Gor’kov, "The Critical supercooling field in superconductivity theory," Soviet Physics JETP 10, 593 (1960).
[54]V. L. Ginzburg and L. D. Landau, "On the theory of superconductivity," Zh. eksp. teor. Fiz 20, 35 (1950).
[55]K. Maki, "Effect of Pauli paramagnetism on magnetic properties of high-field superconductors," Physical Review 148, 362 (1966).
[56]C. Lue, H. Liu, C. Kuo, P. Shih, J. Lin, Y. Kuo, M. Chu, T. Hung, and Y. Chen, "Investigation of normal and superconducting states in noncentrosymmetric Re24Ti5," Superconductor Science and Technology 26, 055011 (2013).
[57]A. Tari, The specific heat of matter at low temperatures. World Scientific (2003).
[58]X. Zhang, W. Yi, K. Feng, D. Wu, Y. Yang, P. Zheng, J. Yao, Y. Matsushita, A. Sato, and H. Jiang, "Crystal Growth, Structural, Electrical, and Magnetic Properties of Mixed-Valent Compounds YbOs2Al10 and LuOs2Al10," Inorganic chemistry 53, 4387 (2014).
[59]W. McMillan, "Transition temperature of strong-coupled superconductors," Physical Review 167, 331 (1968).
[60]J. Carbotte, "Properties of boson-exchange superconductors," Reviews of Modern Physics 62, 1027 (1990).
[61]P. B. Allen and R. Dynes, "Transition temperature of strong-coupled superconductors reanalyzed," Physical Review B 12, 905 (1975).
[62]N. Berk and J. Schrieffer, "Effect of ferromagnetic spin correlations on superconductivity," Physical Review Letters 17, 433 (1966).
[63]M. Gamża, W. Schnelle, A. Ślebarski, U. Burkhardt, R. Gumeniuk, and H. Rosner, "Electronic structure and thermodynamic properties of Ce3Rh4Sn13 and La3Rh4Sn13," Journal of Physics: Condensed Matter 20, 395208 (2008).
[64]K. Kadowaki and S. Woods, "Universal relationship of the resistivity and specific heat in heavy-fermion compounds," Solid state communications 58, 507 (1986).
[65]H. Kontani, "Generalized Kadowaki–Woods relation in heavy fermion systems with orbital degeneracy," Journal of the Physical Society of Japan 73, 515 (2004).
[66]S. Sanada, Y. Aoki, H. Aoki, A. Tsuchiya, D. Kikuchi, H. Sugawara, and H. Sato, "Exotic heavy-fermion state in filled skutterudite SmOs4Sb12," Journal of the Physical Society of Japan 74, 246 (2005).
[67]N. Takeda and M. Ishikawa, "The ferromagnetic Kondo-lattice compound SmFe4P12," Journal of physics. Condensed matter 15, L229 (2003).
[68]N. Tsujii, H. Kontani, and K. Yoshimura, "Universality in heavy fermion systems with general degeneracy," Physical review letters 94, 057201 (2005).
[69]N. Tsujii, K. Yoshimura, and K. Kosuge, "Deviation from the Kadowaki–Woods relation in Yb-based intermediate-valence systems," Journal of Physics: Condensed Matter 15, 1993 (2003).
[70]T. Ekino, A. M. Gabovich, M. S. Li, M. Pękała, H. Szymczak, and A. I. Voitenko, "d-wave superconductivity and s-wave charge density waves: Coexistence between order parameters of different origin and symmetry," Symmetry 3, 699 (2011).