| 研究生: |
黃莉貽 Huang, Li-Yi |
|---|---|
| 論文名稱: |
以食品級界面活性劑萃取檸檬皮精油及其應用之研究 Study on Extraction of Essential Oils from Lemon Peels with Food-Grade Surfactants and its Applications |
| 指導教授: |
陳炳宏
Chen, Bing-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 141 |
| 中文關鍵詞: | 檸檬 、精油 、非離子界面活性劑 、萃取 、抑菌 、增濃 |
| 外文關鍵詞: | lemon, essential oils, nonionic surfactants, extraction, antibacterial activity, preconcentration |
| 相關次數: | 點閱:185 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
檸檬精油儲存於檸檬果皮的油胞皮層內,其中約90%為單萜烯類,主要成分為d-檸檬烯 (d-limonene),其次為β-蒎烯 (β-pinene)以及γ-松油烯 (γ-terpinene),故選擇以上三個成分作為HPLC定量分析精油的目標物。檸檬的用途,以食用為主,在壓榨成汁後,所剩殘渣與果皮占整顆檸檬重量的一半,因此近年來廢棄果皮再利用的議題受到重視,果皮內含有豐富的果膠、精油以及生物活性物質 (bioactive compounds),而精油除了芳香療法及香味添加的應用外,其主要成分d-檸檬烯具有預防癌症的功效,包括皮膚癌及乳癌,此外,精油為良好的抑菌劑,如:真菌、桿菌等,由於抗癌、抗菌與抗氧化等功效,使精油在食品及醫藥營養方面有其重要性。故本實驗期能在安全且環保的前提下提升精油的萃取效率與產量,並且探討精油的抑菌效果。
本實驗以食品級界面活性劑萃取檸檬精油。以食品級與生物相容性為優先考量,並且以雲點溫度、精油溶解度、粒徑分布及穩定性與臨界微胞濃度作為篩選指標,得到最佳配方-P123與T80混合比例1:4。混合界面活性劑水溶液萃取結果顯示,P123/T80 (1:4)的萃取能力亦為最佳,並且隨著濃度與時間增加而上升,萃取新鮮與廢氣檸檬皮的最大量為每克的皮可萃取出5.92與2.08 mg的精油量,約占實際含量之59.21與50.21%。精油的抑菌活性實驗結果顯示,精油對三種細菌之抑制效果為B. cereus最佳,E. coli BL21 (DE3) 其次,P. hauseri ZMd44最差,且比較萃取的精油與增濃的精油對抑菌的結果可知,增濃技術能使抑菌效果有所提升。以界面活性劑增濃檸檬精油實驗結果顯示,精油的初始濃度對增濃效果沒有影響,而添加鹽類,會造成雲點溫度大幅下降,以6 wt% P123/T80具有最佳的增濃效果,其增濃因子約為20倍。
In this study, lemon essential oils (LEOs) were extracted from lemon peels by using nonionic microemulsions which could avoid the problem of residual organic solvent and large energy consumption. At first, the stability of the microemulsion formulations, including P123/Tween80 (in 1/4 mass ratio), P123/PE 64 (in 1/4 mass ratio) and P123/T20 (in 1/2.5 mass ratio), was examined by size measurements with the dynamic light scattering (DLS). Our results showed that P123/Tween 80 was the most stable one during a test duration of 21 days. With the good storage stability, the P123/Tween80 system could satisfactorily form microemulsions and extract LEOs from peels. Effects of various parameters including the mixed ratios of surfactants, the dosage of surfactants and the concentrations of micellar solutions, as well as the procedures of the dynamic extraction, were all investigated in attempt to optimize the extraction condition. The results of LEOs extraction obtained by using 6 wt% P123/Tween80 after 24 h indicated an LEO extraction efficiency of 59.2% and 50.2% for fresh and waste peels, respectively. Moreover, the preconcentration technique was well used with sodium sulfate added to dramatically decrease the cloud point of the three formulations. Under the optimal condition, the preconcentration factor of P123/Tween80 was more than 20 and the most in all mixed surfactants used in this work. On the other hand, the antibacterial activity was determined against bacteria using growth curve and disc diffusion method under in vitro conditions. The commercial LEOs and extracted LEOs had fairly better activity against Bacillus cereus, compared with Escherichia coli BL21(DE3) and Proteus hauseri ZMd44. It is also found that the antibacterial effect of LEOs could be further improved by using preconcentration technique, leading to the higher concentration of LEOs present.
Almgren M., Bahadur P., Jansson M., Li P., Brown W., Bahadur A. Static and dynamic properties of a (PEO-PPO-PEO) block copolymer in aqueous solution. Journal of colloid and interface science, 151, 157-165 (1992)
Arce A., Soto A. Citrus essential oils: extraction and deterpenation. Tree and Forestry Science and Biotechnology, 2, 1-9 (2008)
Azmir J., Zaidul I.S.M., Rahman M.M., Sharif K.M., Mohamed A., Sahena F., Jahurul M.H.A., Ghafoor K., Norulaini N.A.N., Omar A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering, 117, 426-436 (2013)
Baker C.N., Stocker S.A., Culver D.H., Thornsberry C. Comparison of the E test to agar dilution, broth microdilution, and agar diffusion susceptibility testing techniques by using a special challenge set of bacteria. Journal of clinical microbiology, 29, 533-538 (1991)
Bakkali F., Averbeck S., Averbeck D., Idaomar M. Biological effects of essential oils--a review. Food and Chemical Toxicology, 46, 446-475 (2008)
Balouiri M., Sadiki M., Ibnsouda S.K. Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6, 71-79 (2016)
Barba F.J. , Zhu Z., Koubaa M., Sant'Ana A.S., Orlien V. Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A review. Trends in Food Science & Technology 49, 96-109 (2016)
Berdy J. Bioactive Microbial Metabolites. The Journal Of Antibiotics, 58, 1-26 (2005)
Berghaus L.J., Giguere S., Guldbech K., Warner E., Ugorji U., Berghaus R.D. Comparison of Etest, disk diffusion, and broth macrodilution for in vitro susceptibility testing of Rhodococcus equi. Journal of clinical microbiology, 53, 314-318 (2015)
Braunschweig R.V., 溫佑君(譯). 精油圖鑑: 城邦文化事業股份有限公司 (2003)
Burt S. Essential oils: their antibacterial properties and potential applications in foods--A review. International journal of food microbiology, 94, 223-253 (2004)
Burt S.A., Reinders R.D. Antibacterial activity of selected plant essential oils against Escherichia coli O157:H7. Letters in Applied Microbiology, 36, 162-167 (2003)
Carabias-Martinez R., Rodriguez-Gonzalo E., Dominguez-Alvarez J., Hernández-Méndez J. Cloud point extraction as a preconcentration step prior to capillary electrophoresis. Analytical Chemistry, 71, 2468-2474 (1999)
Carson C.F., Mee B.J., Riley T.V. Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and
salt tolerance assays and electron microscopy. Antimicrobial Agents and Chemotherapy, 46, 1914–1920 (2002)
Cassel E., Frizzo C.D., Vanderlinde R., Atti-Serafini L., Lorenzo D., Dellacassa E. Extraction of baccharis oil by supercritical CO2. Industrial & Engineering Chemistry Research, 39, 4803-4805 (2000)
Chautmal R.C., Patil T.J. Influence of myo-inositol on thermodynamics of clouding behavior of non-ionic surfactant Tween-40. Oriental Journal of Chemistry, 27, 691-695 (2011)
Chiappetta D.A., Sosnik A. Poly(ethylene oxide)-poly(propylene oxide) block copolymer micelles as drug delivery agents: improved hydrosolubility, stability and bioavailability of drugs. European Journal of Pharmaceutics and Biopharmaceutics, 66, 303-317 (2007)
Choi I.S., Lee Y.G., Khanal S.K., Park B.J., Bae H.-J. A low-energy, costeffective approach to fruit and Citrus peel waste processing for bioethanol
production. Applied Energy 140, 65-74 (2015)
Choma I.M., Grzelak E.M. Bioautography detection in thin-layer chromatography. Journal of Chromatography A, 1218, 2684-2691 (2011)
Choma I.M., Jesionek W. TLC-direct bioautography as a high throughput method for detection of antimicrobials in plants. Chromatograph, 2, 225-238 (2015)
Cowan M.M. Plant products as antimicrobial agents. Clinical Microbiology Reviews 12, 564-582 (1999)
Denyer S.P. Mechanisms of action of antibacterial biocides. International Biodeterioration & Biodegradation 96, 227-245 (1995)
Di Vaio C., Graziani G., Gaspari A., Scaglione G., Nocerino S., Ritieni A. Essential oils content and antioxidant properties of peel ethanol extract in 18 lemon cultivars. Scientia Horticulturae, 126, 50-55 (2010)
Ferhat M.A., Meklati B.Y., Chemat F. Comparison of different isolation methods of essential oil from Citrus fruits: cold pressing, hydrodistillation and microwave ‘dry’ distillation. Flavour and Fragrance Journal, 22, 494-504 (2007)
Ferreira Lins R., Rogério Lustri W., Minharro S., Alonso A., de Sousa Neto D. On the formation, physicochemical properties and antibacterial activity of colloidal systems containing tea tree (Melaleuca alternifolia) oil. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 497, 271-279 (2016)
Fisher K., Phillips C. Potential antimicrobial uses of essential oils in food: is Citrus the answer? Trends in Food Science & Technology, 19, 156-164 (2008)
Gök Aslı, İsmail Kirbaşlar Ş, Gülay Kirbaşlar F. Comparison of lemon oil composition after using different extraction methods. Journal of Essential Oil Research, 27, 17-22 (2014)
Gerlier D., Thomasset N. Use of MTT colorimetric assay to measure cell activation. Journal of Immunological Methods, 94, 57-63 (1986)
Hausdorfer J., Sompek E., Allerberger F., Dierich M.P. E-test for susceptibility testing of Mycobacterium Tuberculosis. The International Journal of Tuberculosis and Lung Disease, 2, 751-755 (1998)
Heatley N.G. A method for the assay of penicillin. The Journal of Biochemistry, 38, 61-65 (1944)
Jorgensen J.H., Ferraro M.J. Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 49, 1749-1755 (2009)
Kalyanasundaram K., Thomas J.K. Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems Journal of the American Chemical Society, 99, 2039-2044 (1977)
Kumar S.N., Nambisan B., Sundaresan A., Mohandas C. , Anto R.J. Isolation and identification of antimicrobial secondary metabolites from Bacillus cereus associated with a Rhabditid Entomopathogenic Nematode. Annals of Microbiology, 64, 209-218 (2013)
Lambert R.J.W., Skandamis P.N., Coote P., Nychas G.-J.E. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. Journal of applied microbiology, 91, 453-462 (2001)
Lucchesi M.E., Chemat F., Smadja J. Solvent-free microwave extraction of essential oil from aromatic Herbs: comparison with conventional hydro-distillation. Journal of Chromatography A, 1043, 323-327 (2004)
Magaldi S., Mata-Essayag S., Hartung de Capriles C., Perez C., Colella M.T., Olaizola C., Ontiveros Y. Well diffusion for antifungal susceptibility testing. International Journal of Infectious Diseases, 8, 39-45 (2004)
Mamma D., Kourtoglou E., Christakopoulos P. Fungal multienzyme production on industrial by-products of the Citrus-processing industry. Bioresource technology, 99, 2373-2383 (2008)
Marín F.R., Soler-Rivas C., Benavente-García O., Castillo J., Pérez-Alvarez J.A. By-products from different Citrus processes as a source of customized functional fibre. Food chemistry, 100, 736-741 (2007)
Marston A. Thin-layer chromatography with biological detection in phytochemistry. Journal of Chromatography A, 1218, 2676-2683 (2011)
Myers D. Surfaces, interfaces, and colloids: principles and applications: Wiley-VCH. (1999)
Myers D. Surfactant Science and Technology: Wiley-Interscience. (2005)
Nazzaro F., Fratianni F., De Martino L., Coppola R., De Feo V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals, 6, 1451-1474 (2013)
Negro V., Mancini G., Ruggeri B., Fino D. Citrus waste as feedstock for bio-based products recovery: Review on limonene case study and energy valorization. Bioresource technology, 214, 806-815 (2016)
Nerio L.S., Olivero-Verbel J., Stashenko E. Repellent activity of essential oils: A review. Bioresource technology, 101, 372-378 (2010)
Pandey A.K., Kumar P., Singh P., Tripathi N.N., Bajpai V.K. Essential oils: sources of antimicrobials and food preservatives. Frontiers in Microbiology, 7, 1-14 (2017)
Pfaller M.A., Sheehan D.J., Rex J.H. Determination of fungicidal activities against yeasts and molds: lessons learned from bactericidal testing and the need for standardization. Clinical Microbiology Reviews, 17, 268-280 (2004)
Pourbafrani M., Forgács G., Horváth I.S., Niklasson C., Taherzadeh M.J. Production of biofuels, limonene and pectin from Citrus wastes. Bioresource technology, 101, 4246-4250 (2010)
Rahate A.R., Nagarkar J.M. Emulsification of vegetable oils using a blend of nonionic surfactants for cosmetic applications. Journal of Dispersion Science and Technology, 28, 1077-1080 (2007)
Rodríguez-Tudela J.L., Barchiesi F., Bille J., Chryssanthou E., Cuenca-Estrella M., Denning D., Donnelly J.P., Dupont B., Fegeler W., Moore C., Richardson M., Verweij P.E. Method for the determination of minimum inhibitory concentration (MIC) by broth dilution of fermentative yeasts. Clinical Microbiology and Infection, 9, 1-8 (2003)
Rubingh D.N., Holland P.M. Cationic surfactants – physical chemistry. Surfactant Science Series, 37 (1990)
Ruiz B., Flotats X. Citrus essential oils and their influence on the anaerobic digestion process: an overview. Waste management, 34, 2063-2079 (2014)
Runyoro D.K., Matee M.I., Ngassapa O.D., Joseph C.C., Mbwambo Z.H. Screening of tanzanian medicinal plants for anti-Candida activity. BMC complementary and alternative medicine, 6, 11 (2006)
Shinoda K., Arai H. The correlation between phase inversion temperature in emulsion and cloud point in solution of nonionic emulsifier. The Journal of Physical Chemistry, 68, 3485-3490 (1964)
Sikkema J., De Bont J.A.M., Poolman B. Interactions of cyclic hydrocarbons with biological membranes. Journal of Biological Chemistry, 269, 8022–8028. (1994)
Silva J., Abebe W., Sousa S.M., Duarte V.G., Machado M.I.L., Matos F.J.A. Analgesic and anti-inflammatory effects of essential oils of Eucalyptus. Journal of Ethnopharmacology, 89, 277-283 (2003)
Sokovic M., Glamoclija J., Marin P.D., Brkic D., van Griensven L.J. Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules, 15, 7532-7546 (2010)
Soontravanich S., Walsh S., Scamehorn J.F., Harwell J.H., Sabatini D.A. Interaction between an anionic and an amphoteric surfactant. part II: precipitation. Journal of Surfactants and Detergents, 12, 145-154 (2009)
Starmans D.A.J., Nijhuis H.H. Extraction of secondary metabolites from plant material: A review. Trends Food Sci Technol, 7, 191-197 (1996)
Tadros T.F. Applied Surfactants: Principles and Applications: Wiley-VCH Verlag GmbH & Co KGaA, Weinheim. (2005)
Thanaboripat D., Mongkontanawut N., Suvathi Y., Ruangrattanamatee V. Inhibition of Aflatoxin production and growth of Aspergillus flavus by citronella oil. KMITL Science and Technology Journal, 4 (2004)
Thavanapong N., Wetwitayaklung P., Charoenteeraboon J. Comparison of essential oils compositions of Citrus maximaMerr. peel obtained by cold press and vacuum stream distillation methods and of its peel and flower extract obtained by supercritical carbon dioxide extraction method and their antimicrobial activity. Journal of Essential Oil Research, 22, 71-77 (2010)
Valgas C., De Souza S.M., Smânia E.F.A., Smânia Jr A. Screening methods to determine antibacterial activity of natural products. Brazilian Journal of Microbiology, 38, 369-380 (2007)
Wang L., Weller C.L. Recent advances in extraction of nutraceuticals from plants. Trends in Food Science & Technology 17, 300-312 (2006)
White R.L., Burgess D.S., Manduru M., Bosso J.A. Comparison of three different in vitro methods of detecting synergy: time-kill, checkerboard, and E test. Antimicrobial Agents and Chemotherapy, 40, 1914-1918 (1996)
Wilkins M.R., Suryawati L., Maness N.O., Chrz D. Ethanol production by Saccharomyces cerevisiae and Kluyveromyces marxianus in the presence of orange-peel oil. World J Microbiol Biotechnol, 23, 1161-1168 (2007)
Wink M. Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry, 64, 3-19 (2003)
刈米孝夫. 界面活性劑的原理與應用: 高立圖書有限公司 (1989)
行政院農委會. 農業統計年報 (2015)
易光輝, 王曉芬, 李依蒨. 精油化學基礎與實務應用: 華杏出版股份有限公司 (2008)
陳福安. 花草的精靈. 科學發展, 469, 5 (2012)
傅維萱. 以非離子型界面活性劑及超臨界二氧化碳萃取檸檬皮精油之研究. 國立成功大學碩士論文 (2014)
黃健政, 張譽穎, 黃英旭, 李欣格, 陳心怡. 乳化劑性質與超音波乳化對台灣數種柑橘類果皮精油製備成O/W乳化物特性與抑菌作用的影響. 行政院國家科學委員會. (2005)
廖信昌. 柑橘精油應用於環衛害蟲之防除. 農業世界, 178, 60-64 (1998)
趙承琛. 界面科學基礎: 復文書局 (1993)
謝博銓. 花草精靈—精油的奧祕. 科學發展, 469, 6-9 (2012a)
謝博銓. 天然精油的抽提工藝. 科學發展, 469, 10-13 (2012b)
魏宇晨. 以非離子型界面活性劑萃取檸檬皮精油之研究. 國立成功大學碩士論文 (2012)
羅仁廷. 以混合界面活性劑系統當作疏水性藥物之藥物輸送載體之研究. 國立成功大學碩士論文 (2007)
蘇裕昌. 精油的化學. 林業研究專訊 15, 1-5 (2008a)
蘇裕昌. 精油之抗菌活性. 林業研究專訊, 15, 31-37 (2008b)