| 研究生: |
鄭少耘 Cheng, Shao-Yun |
|---|---|
| 論文名稱: |
台灣常用竹構接合型式分類與結構性能試驗 Classification and Structural Performance Tests of Common Bamboo Joints in Taiwan |
| 指導教授: |
杜怡萱
Tu, Yi-Hsuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 171 |
| 中文關鍵詞: | 竹材 、竹構造 、竹接頭 、接頭分類 、接頭試驗 |
| 外文關鍵詞: | bamboo, bamboo construction, bamboo joint, joint classification, joint test |
| 相關次數: | 點閱:180 下載:46 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為達到環境永續之目標,使用綠色建材成為趨勢。竹材在台灣分布範圍廣泛,生長週期短,且能自然分解,若作為構築材料,可節省運輸及製造過程耗能,減少對環境負擔。然而,竹材為天然材料變異性高,接頭形式多樣化,其結構性能之確認為竹構造設計中的重要課題。
本研究透過實地訪查與相關文獻之整理,歸納竹構造常見接頭形式,依照接合方式分類為:綁紮式接合、插梢式接合、中介構件接合、集成式接合以及穿透式接合五種,或依接合部位分類為:軸向續接、正交橫接、非正交橫接、及支承端接合四種,並根據國內外文獻整理常見竹構造接頭試驗方法,依照測試之力學機制區分為:軸力構件端部接頭的抗拉試驗及抗壓試驗、正交橫接接頭的抗拉試驗、抗彎試驗、抗剪試驗及錯開接合抗剪試驗等種類。
本研究亦針對孟宗竹進行抗拉試驗與含水率試驗,得到平均極限抗拉強度約為160.46MPa、平均含水率為11.27%
為了解台灣常用竹構接頭之強度,本研究再針對三種實際運用於本土竹構之接頭進行結構性能試驗,第一種為大藏聯合建築師事務所的軸力構件端部接頭抗拉試驗,試驗結果顯示其原型試體皆破壞於接合處的鍍鋅鋼管而非竹材,表示其設計可有效傳遞軸力;第二種為使用方回結綁紮之正交橫接接頭抗剪試驗,試驗結果發現增加繩索纏繞圈數對於抗剪強度並無幫助,而在綁紮處貼上布膠帶增加接觸面摩擦係數,則可明顯提高抗剪強度,並能減少強度的變異性;第三種為常見於簡易竹棚架上的鐵線綁紮式正交及非正交橫接接頭抗剪試驗,結果顯示試體破壞模式會因為鐵線是否綁紮在竹節上而分為過節破壞與滑移破壞,若為過節破壞,其強度與竹材直徑跟竹節突出程度皆呈中度正相關,若為滑移破壞,其強度推測與綁紮時旋緊程度有關,而竹桿間的相交角度與鐵線的綁紮方式皆對破壞載重無明顯影響。
本研究之接頭分類可方便竹構造設計者查詢常用接頭形式,各種接頭試驗強度之數據則可提供本土竹構接頭於實務結構設計時之參考。
Bamboo is widely available in Taiwan, and it is lightweight, biodegradable, and has a short growing period. As a building material, bamboo can reduce energy consumption in the transportation and manufacturing process. However, bamboo has high variability; thus, bamboo joints have various shapes, making the discussion of their structural performance particularly important.
This study establishes the classification of the most common bamboo joints. They can be classified by their connection method into five categories: lashing, pinning, intermediate component, compound, and penetration. Moreover, joints can also be classified by the position of the connection into four categories: axial-continue, orthogonal, non-orthogonal, and foundation.
After reviewing the literature on the structural performance tests of bamboo joints, it was determined that they can be classified by their mechanical mechanisms into six subsets: two of them consisting of the tensile and compression tests of the axial member end joints and three of the tensile, bending and shear tests of the orthogonal joints, and shear test of the staggered joint.
Two material tests were performed to verify the mechanical properties of Moso bamboo. The first was the tensile test, with the average ultimate tensile strength being approximately 160.46 MPa. The second was the moisture content test, the average of which was 11.27%.
Three bamboo joints tests were conducted to check the strength of common bamboo joints in Taiwan. The first test was the tensile test of the axial member end joints, designed by D.Z. Architects & Associates. The second test was the shear test of square knot joints. The third test was the shear test of wire lashing joints, which are commonly used in bamboo scaffolding.
1. 財團法人臺灣竹會,《從竹子到竹房子:給所有人的竹構築指南》,台灣,2020。
2. 黃世孟、劉安平,「推展竹材建築與落實竹材科技補助研究計畫」,內政部建築研究所補助研究計畫報告,2003。
3. 游家誠,「古蹟歷史建築修復施作過程竹材保護棚架系統之研擬與應用」,碩士論文,國立成功大學建築系,台南,2009。
4. 甘銘源,「竹建築設計之構思—以雲林農博公園為例」,林業研究專訊,Vol.21,No.1,2014。
5. López, O. H., Manual de construccion con bamboo. Bogotá: Estudios Técnicos Colombianos, 1981.
6. Davies, C., “Bamboo Connections”, Master Thesis, University of Bath, 2008.
7. Padovan, R. V., “O Bambu Na Arquitetura: Design De Conexões Estrutuai”, Master Thesis, Universidade de São Paulo, 2010.
8. Widyowijatnoko, A., & Trautz, M., “Development of lashing-based bamboo joints”, Proceedings of the 9th World Bamboo Congress, 441-457, Antwerp, April 10-13, 2012.
9. Vahanvati, M., “The Challenge of Connecting Bamboo”, Proceedings of the 10th World Bamboo Congress, Damyang, September 17-22, 2015.
10. Sassu, M., Falco, A. D., Giresini, L. & Puppio, M. L., “Structural Solutions for Low-Cost Bamboo Frames: Experimental Tests and Constructive Assessments”, Materials 2016, 9, 346, 2016.
11. 永井拓生、陶器浩一,竹の設計強度の算定および人力施工が可能な接合法の開発,日本建築学会技術報告集,第22巻第52号, 925-928,2016。
12. Ministerio de Vivienda, Construcción y Saneamiento, Norma Técnica E.100 para el uso deBambú, 2017.
13. Awaludin, A. & Andriani, V., “Bolted Bamboo Joints Reinforced with Fibers”, Proceedings of the 2nd International Conference on Sustainable Civil Engineering Structures and Construction Materials, Yogyakarta, Indonesia, 2014.
14. Ubidia, J. M. Construir con Bambú Manual de construcción, Beijing: International Network for Bamboo and Rattan, 2000.
15. ISO, ISO22157: Bamboo structures—Determination of physical and mechanical properties of bamboo culms—Test methods, Geneva, Switzerland, 2004.
16. 林家荷,「竹材應用於薄膜式完全張力體之研究」,碩士論文,國立成功大學建築系,台南,2015。
17. ISO, ISO22156: Bamboo—Structural, Geneva, Switzerland, 2014.
18. ISO, ISO22156: Bamboo—Structural, Geneva, Switzerland, 2021.
19. 內政部營建署,「木構造建築物設計及施工技術規範」,2003。
20. 內政部營建署,「鋼構造建築物鋼結構設計技術規範」,2016。