| 研究生: |
施宥騏 Shih, You-Chi |
|---|---|
| 論文名稱: |
以溶液法製備金屬摻雜氧化鎳應用於反置型鈣鈦礦太陽能電池 Fabrication of Solution-Processed Metal-Doped Nickel Oxide for Inverted Perovskite Solar Cells |
| 指導教授: |
高騏
Gau, Chie |
| 共同指導教授: |
郭宗枋
Guo, Tzung-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 反向鈣鈦礦太陽能電池 、溶液法 、金屬摻雜氧化鎳 |
| 外文關鍵詞: | Inverted perovskite solar cell, Solution-process, Metal-doped NiOx |
| 相關次數: | 點閱:87 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文之目的是以溶液法來製備金屬摻雜氧化鎳,並將其當作電洞傳輸層來製備反向鈣鈦礦電池進而提升其表現。鈣鈦礦太陽能電池的結構為ITO/Metal-doped nickel oxide/Perovskite/PCBM/BCP/Ag。近年來,無機的金屬氧化物材料被廣泛應用於電洞傳輸層,其中氧化鎳是一個很早就被使用的p型材料,且使用氧化鎳做出來的元件較穩定,開路電壓(VOC)也較高,但是由於其電阻值相對較高,進而影響了元件的短路電流(JSC)。因此,許多文獻嘗試將其他金屬摻雜進氧化鎳,希望能達到降低其電阻率、改善表面平整度以及改變其能隙帶等效果,進而提升元件的短路電流,使整體的光電轉換效率(PCE)提升。本論文中採用溶液法的方式將金屬材料銅及鋰。首先,我們先配置0.1M的氧化鎳、銅及鋰的前置溶液,之後個別混和成1~7原子百分比的銅及鋰摻雜氧化鎳前置溶液中,之後將溶液以3000轉60秒旋塗在ITO玻璃基板上並退火400"℃" 1小時,最後進入手套箱製備成元件。實驗中發現在銅及鋰摻雜氧化鎳雖然會使穿透下降,但卻能使氧化鎳電阻率下降且讓鈣鈦礦的晶格長的更大。使用銅及鋰摻雜氧化鎳製備之元件分別可使短路電流由15.21mA/cm2提升至18.70mA/cm2及17.95 mA/cm2,效率由11%提升至13.81%及13.44%。
The objective of this paper is to present improved performance of perovskite solar cells (PSCs) based on Metal-doped nickel oxide. The structure of the PSCs is ITO/Metal-doped NiOx/Perovskite/PCBM/BCP/Ag. Recently, metal oxide materials have been frequently used as hole transport layer, e.g. nickel oxide (NiOx) has been used to increase life time and open-circuit voltage (VOC) of the solar cell. However, it decreases the short-circuit current density (JSC) of the devises because of the greater resistance. Therefore, Cu-doped NiOx was used to decrease the resistivity and at the same time to improve the film morphology. These facts can increase the JSC and power conversion efficiency (PCE) of the PSCs. In this paper we dope the NiOx with Cu and Li by solution-process. A 0.1M NiOx, Cu and Li precursor solutions were prepared by dissolving nickel acetate, copper acetate and lithium acetate into ethanol and ethanolamine. Finally, Cu-doped NiOx and Li-doped NiOx precursor solutions were prepared by mixing the NiOx precursor with Cu and Li precursor solutions. Subsequently, Cu-doped NiOx and Li-doped NiOx precursor solutions were spin- coated onto the ITO substrate and annealed. Finally, we transfer the substrates into the glove box to fabricate the devices. Although the transmittance of the Cu-doped NiOx and Li-doped NiOx decreases, the resistance decreases and the grain size increase. These facts lead to significant increase in cell performance. The JSC of the devices increases by about 15mA/cm2 to about 17mA/cm2, achieves a PCE about 13%.
1 D. M. Chapin, C. Fuller, G. Pearson "A new silicon p‐n junction photocell for converting solar radiation into electrical power." Journal of Applied Physics, 25, 676-677 (1954).
2 M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop "Solar cell efficiency tables (Version 45)." Progress in Photovoltaics: Research and Applications, 23, 1-9 (2015).
3 D. E. Carlson, C. R. Wronski "Amorphous silicon solar cell." Applied Physics Letters , 28, 671-673 (1976).
4 P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. M. Friedmeier, M. Powalla "Properties of Cu (In, Ga) Se2 solar cells with new record efficiencies up to 21.7%." Physica Status Solidi (RRL)-Rapid Research Letters , 9, 28-31 (2015).
5 H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya "Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell." Nature , 261, 402 - 403 (1976).
6 B. O’regan, M. Grfitzeli "A low-cost, high-efficiency solar cell based on dye-sensitized." Nature , 353, 737-740 (1991).
7 J. Tsukamoto, H. Ohigashi, K. Matsumura , A. A Takahashi "Schottky barrier type solar cell using polyacetylene." Japanese Journal of Applied Physics , 20, L127 (1981).
8 S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, A. J. Heeger "Bulk heterojunction solar cells with internal quantum efficiency approaching 100%." Nature Photonics , 3, 297-302 (2009).
9 R. Gaudiana , C. Brabec "Organic materials: Fantastic plastic." Nature Photonics , 2, 287-289 (2008).
10 G. Li, C. Chu, V. Shrotriya, J. Huang, Y. Yang "Efficient inverted polymer solar cells." Applied Physics Letters , 88, 253503-253503 (2006).
11 M. White, D. Olson, S. Shaheen, N. Kopidakis, D. S. Ginley "Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer." Applied Physics Letters , 89, 143517 (2006).
12 G. Zhao, Y. He, Y. Li "6.5% Efficiency of Polymer Solar Cells Based on poly (3‐hexylthiophene) and Indene‐C60 Bisadduct by Device Optimization." Advanced Materials , 22, 4355-4358 (2010).
13 蔡進. "超高效率太陽電池-從愛因斯坦的光電效應談起." 物理雙月刊 , 27, 701-719 (2005).
14 V. Mihailetchi, P. Blom, J. Hummelen, M. Rispens "Cathode dependence of the open-circuit voltage of polymer: fullerene bulk heterojunction solar cells." Journal of Applied Physics , 94, 6849-6854 (2003).
15 N. G. Park "Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell." The Journal of Physical Chemistry Letters , 4, 2423-2429 (2013).
16 G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätze, S. Mhaisalka, T. C. Sum "Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3." Science , 342, 344-347 (2013).
17 M. Grätzel "The light and shade of perovskite solar cells." Nature Materials 13, 838-842 (2014).
18 Science, A. A. f. t. A. o. "Newcomer Juices Up the Race to Harness Sunlight." Science , 342, 1438-1439 (2013).
19 A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells." Journal of the American Chemical Society , 131, 6050-6051 (2009).
20 J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, N. G. Park "6.5% efficient perovskite quantum-dot-sensitized solar cell." Nanoscale , 3, 4088-4093 (2011).
21 H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Grätzel, N. G. Park "Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%." Scientific Reports , 2, 591 (2012).
22 M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith "Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites." Science , 338, 643-647 (2012).
23 L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, M. Grätzel "Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells." Journal of the American Chemical Society , 134, 17396-17399 (2012).
24 J. Burschka, N. Pellet, S. J. Pellet, R. Pellet, P. Gao, M. K. Nazeeruddin, M. Grätzel "Sequential deposition as a route to high-performance perovskite-sensitized solar cells." Nature , 499, 316-319 (2013).
25 M. Liu, M. B. Johnston, H. J. Snaith "Efficient planar heterojunction perovskite solar cells by vapour deposition." Nature , 501, 395-398 (2013).
26 Q. Chen, H. Zhou, S. Luo, H. S. Duan, H. H. Wang, S. Liu, G. Li, Y. Yang "Planar heterojunction perovskite solar cells via vapor-assisted solution process." Journal of the American Chemical Society , 136, 622-625 (2013).
27 H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang "Interface engineering of highly efficient perovskite solar cells." Science , 345, 542-546 (2014).
28 W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok "High-performance photovoltaic perovskite layers fabricated through intramolecular exchange." Science , 348, 1234-1237 (2015).
29 J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen, T.-C. Wen "CH3NH3PbI3 Perovskite/Fullerene Planar‐Heterojunction Hybrid Solar Cells." Advanced Materials , 25, 3727-3732 (2013).
30 S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T. C. Sum, Y. M. Lam "The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells." Energy & Environmental Science , 7, 399-407 (2014).
31 P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, H. J. Snaith "Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates." Nature Communications , 4, 2761 (2013).
32 J. You, Z. Hong, Y. Yang, Q. Chen, M. Cai, T. B. Song, C. C. Chen, S. Lu, Y. Liu, H. Zhou, Y. Yang "Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility." ACS Nano , 8, 1674-1680 (2014).
33 Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, J. Huang "Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process." Energy & Environmental Science , 7, 2359-2365 (2014).`
34 J. Shi, J. Dong, S. Lv, Y. Xu, L. Zhu, J. Xiao, X. Xu, H. Wu, D. Li, Y. Luo, Q. Meng "Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction property." Applied Physics Letters , 104, 063901 (2014).
35 H. Wei, J. Shi, X. Xu, J. Xiao, J. Luo, J. Dong, S. Lv, L. Zhu, H. Wu, D. Li, Y. Luo, Q. Meng, Q. Chen "Enhanced charge collection with ultrathin AlOx electron blocking layer for hole-transporting material-free perovskite solar cell." Physical Chemistry Chemical Physics , 17, 4937-4944 (2015).
36 D. Liu, Yang, T. L. Kelly "Compact layer free perovskite solar cells with 13.5% efficiency." Journal of the American Chemical Society , 136, 17116-17122 (2014).
37 W. Ke, G. Fang, J. Wan, H. Tao, Q. Liu, L. Xiong, P. Qin, J. Wang, H. Lei, G. Yang, M. Qin, X. Zhao, Y. Yan "Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells." Nature Communications , 6, 6700 (2015).
38 Y. Zhang, M. Liu, G. E. Eperon, T. C. Leijtens, D. McMeekin, M. Saliba, W. Zhang, M. de Bastiani, A. Petrozza, L. M. Herz, M. B. Johnston, H. Lin, H. J. Snaith "Charge selective contacts, mobile ions and anomalous hysteresis in organic–inorganic perovskite solar cells." Materials Horizons , 2, 315-322 (2015).
39 H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T. Wang, K. Wojciechowski, W. Zhang "Anomalous hysteresis in perovskite solar cells." The Journal of Physical Chemistry Letters , 5, 1511-1515 (2014).
40 E. L. Unger, E. T. Hoke, C. D. Bailie, W. H. Nguyen, A. R. Bowring, T. Heumüller, M. G. Christiforo, M. D. McGehee "Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells." Energy & Environmental Science , 7, 3690-3698 (2014).
41 K. Norrman, M. V. Madsen, S. A. Gevorgyan, F. C. Krebs "Degradation patterns in water and oxygen of an inverted polymer solar cell." Journal of the American Chemical Society , 132, 16883-16892 (2010).
42 C. Zuo, L. Ding "Solution‐Processed Cu2O and CuO as Hole Transport Materials for Efficient Perovskite Solar Cells." Small , 11, 5528-5532 (2015).
43 S. Ye, W. Sun, Y. Li, H. Peng, Z. Bian, Z. Liu, C. Huang "CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%." Nano Letters , 15, 3723-3728 (2015).
44 A. S. Subbiah, A. Halder, S. Ghosh, N. Mahuli, G. Hodes, S. K. Sarkar "Inorganic hole conducting layers for perovskite-based solar cells." The Journal of Physical Chemistry Letters , 5, 1748-1753 (2014).
45 M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. Chang, T. J. Marks "p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells." Proceedings of the National Academy of Sciences , 105, 2783-2787 (2008).
46 K. X. Steirer, J. P. Chesin, N. D. Widjonarko, J. J. Berry, A. Miedaner, D. S. Ginley, D. C. Olson "Solution deposited NiO thin-films as hole transport layers in organic photovoltaics." Organic Electronics , 11, 1414-1418 (2010).
47 S. Y. Park, H. R. Kim, Y. J. Kang, D. H. Kim, J. W. Kang "Organic solar cells employing magnetron sputtered p-type nickel oxide thin film as the anode buffer layer." Solar Energy Materials and Solar Cells , 94, 2332-2336 (2010).
48 K. X. Steirer, P. F. Ndione, N. E. Widjonarko, M. T. Lloyd, J. Meyer, E. L. Ratcliff, A. Kahn, N. R. Armstrong, C. J. Curtis, D. S. Ginley, J. J. Berry, D. C. Olson "Enhanced efficiency in plastic solar cells via energy matched solution processed NiOx interlayers." Advanced Energy Materials , 1, 813-820 (2011).
49 Z. Zhai, X. Huang, M. Xu, J. Yuan, J. PengW. Ma "Greatly Reduced Processing Temperature for a Solution‐Processed NiOx Buffer Layer in Polymer Solar Cells." Advanced Energy Materials , 3, 1614-1622 (2013).
50 A. Nattestad, A. J. Mozer, M. K. R. Fischer, Y. B. Cheng, A. Mishra, P. Bäuerle, U. Bach "Highly efficient photocathodes for dye-sensitized tandem solar cells." Nature Materials , 9, 31-35 (2010).
51 S. Powar, T. Daeneke, M. T. Ma, D. Fu, N. D. Duffy, G. Götz, M. Weidekener, A. Mishra, P. Bäuerle, L. Spiccia, U. Bach "Highly Efficient p‐Type Dye‐Sensitized Solar Cells based on Tris (1, 2‐diaminoethane) Cobalt (II)/(III) Electrolytes." Angewandte Chemie , 125, 630-633 (2013).
52 F. Odobel, Y. Pellegrin "Recent advances in the sensitization of wide-band-gap nanostructured p-type semiconductors. Photovoltaic and photocatalytic applications." The Journal of Physical Chemistry Letters , 4, 2551-2564 (2013).
53 H. Wang, X. Zeng, Z. Huang, W. Zhang, X. Qiao, B. Hu, X. Zou, M. Wang, Y. B. Cheng, W. Chen "Boosting the Photocurrent Density of p-Type Solar Cells Based on Organometal Halide Perovskite-Sensitized Mesoporous NiO Photocathodes." ACS Applied Materials & Interfaces , 6, 12609-12617 (2014).
54 J. Cui, F. Meng, H. Zhang, K. Cao, H. Yuan, Y. Cheng, F. Huang, M. Wang "CH3NH3PbI3-based planar solar cells with magnetron-sputtered nickel oxide." ACS Applied Materials & Interfaces , 6, 22862-22870 (2014).
55 Z. Zhu, Y. Bai, T. Zhang, Z. Liu, X. Long, Z. Wei, Z. Wang, J. Wang, F. Yan, S. Yang "High‐Performance Hole‐Extraction Layer of Sol–Gel‐Processed NiO Nanocrystals for Inverted Planar Perovskite Solar Cells." Angewandte Chemie , 126, 12779-12783 (2014).
56 H. Tian, B. Xu, H. Chen, E. M. Johansson, G. Boschloo "Solid‐State Perovskite‐Sensitized p‐Type Mesoporous Nickel Oxide Solar Cells." ChemSusChem , 7, 2150-2153 (2014).
57 I. J. Park, M. A. Park, D. H. Kim, G. D. Park, B. J. Kim, H. J Son, M. J. Ko, D. K. Lee, T. Park, H. Shin, N. G. Park, H. S. Jung, J. Y. Kim "New Hybrid Hole Extraction Layer of Perovskite Solar Cells with a Planar p–i–n Geometry." The Journal of Physical Chemistry C , 119, 27285-27290 (2015).
58 W. Chen, Y. Wu, J. Liu, C. Qin, X. Yang, A. Islam, Y. B. Cheng, L. Han "Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells." Energy & Environmental Science , 8, 629-640 (2015).
59 W. C. Lai, K. W. Lin, T. F. Guo, J. Lee "Perovskite-Based Solar Cells With Nickel-Oxidized Nickel Oxide Hole Transfer Layer." Electron Devices, IEEE Transactions on , 62, 1590-1595 (2015).
60 J. H. Park, J. Seo, S. Park, S. S. Shin, Y. C. Kim, N. J. Jeon, H. W. Shin, T. K. Ahn, J. H. Noh, S. C. Yoon, C. S. Hwang, S. I. Seok "Efficient CH3NH3PbI3 Perovskite Solar Cells Employing Nanostructured p‐Type NiO Electrode Formed by a Pulsed Laser Deposition." Advanced Materials , 27, 4013-4019 (2015).
61 J. Y. Jeng, K. C. Chen, T. Y. Chiang, P. Y. Lin, T. D. Tsai, Y. C. Chang, T. F. Guo, P. Chen, T. C. Wen, Y. J. Hsu "Nickel Oxide Electrode Interlayer in CH3NH3PbI3 Perovskite/PCBM Planar‐Heterojunction Hybrid Solar Cells." Advanced Materials , 26, 4107-4113 (2014).
62 L. Hu, J. Peng, W. Wang, Z. Xia, J. Yuan, J. Lu, X. Huang, W. Ma, H. Song, W. Chen, Y. B. Cheng, J. Tang "Sequential deposition of CH3NH3PbI3 on planar NiO film for efficient planar perovskite solar cells." ACS Photonics , 1, 547-553 (2014).
63 K.C. Wang, J. Y. Jeng, Y. C. Chang, E. W. G. Diau, C. H. Tsai, H. C. Chao, H. C. Hsu, P. Y. Lin, P. Chen, T. F. Guo, T.-C. Wen "p-Type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells." Scientific Reports , 4, 4756 (2014).
64 K. C. Wang, P. S. Shen, M. H. Li, S. Chen, M. W. Lin, P. Chen, T. F. Guo "Low-temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiO/CH3NH3PbI3 perovskite heterojunction solar cells." ACS Applied Materials & Interfaces , 6, 11851-11858 (2014).
65 I. Popescu, E. Heracleous, Z. Skoufa, A. Lemonidou, I.-C. Marcu "Study by electrical conductivity measurements of semiconductive and redox properties of M-doped NiO (M= Li, Mg, Al, Ga, Ti, Nb) catalysts for the oxidative dehydrogenation of ethane." Physical Chemistry Chemical Physics , 16, 4962-4970 (2014).
66 E. Avendaño, A. Azens, G. Niklasson, C. Granqvist "Electrochromism in nickel oxide films containing Mg, Al, Si, V, Zr, Nb, Ag, or Ta." Solar Energy Materials and Solar Cells , 84, 337-350 (2004).
67 S. Kumavat, M. Deshpande "Alkali metal doped nickel oxide clusters: A density functional study." Computational and Theoretical Chemistry , 1035, 19-27 (2014).
68 I. Sta, M. Jlassi, M. Hajji, H. Ezzaouia "Structural, optical and electrical properties of undoped and Li-doped NiO thin films prepared by sol–gel spin coating method." Thin Solid Films , 555, 131-137 (2014).
69 F. S. Hashim, K. H. Mohsin "Effect of Li Doping on Structure and Optical Energy Gap of NiO Films." Journal of Kufa-Physics , 7, 43-52 (2015).
70 K. H. Kim, C. Takahashi, Y. Abe, M. Kawamura "Effects of Cu doping on nickel oxide thin film prepared by sol–gel solution process." Optik-International Journal for Light and Electron Optics , 125, 2899-2901 (2014).
71 S. Chen, T. Y. Kuo, S. U. Jen, H. P. Chiang, W. Y. Liu, C. H. Wang "Effect of copper content on the electrical stability of nickel oxide films." Thin Solid Films , 584, 238-242 (2015).
72 G. Allaedini, P. Aminayi, S. M. Tasirin "Structural properties and optical characterization of flower-like Mg doped NiO." AIP Advances , 5, 077161 (2015).
73 M. B. Amor, A. Boukhachem, K. Boubaker, M. Amlouk "Structural, optical and electrical studies on Mg-doped NiO thin films for sensitivity applications." Materials Science in Semiconductor Processing , 27, 994-1006 (2014).
74 J. H. Kim, P. W. Liang, S. T. Wiliams, N. Cho, C. C. Chueh, M. S. Glaz, D. S. Ginger, A. K. Y. Jen "High‐Performance and Environmentally Stable Planar Heterojunction Perovskite Solar Cells Based on a Solution‐Processed Copper‐Doped Nickel Oxide Hole‐Transporting Layer." Advanced Materials , 27, 695-701 (2015).
75 W. Chen, Y. Wu, Y. Yue, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, L. Han "Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers." Science , 350, 944-948 (2015).
76 W. C. Lai, K. W. Lin, Y. T. Wang, T. Y. Chiang, P. Chen, T.-F. Guo "Oxidized Ni/Au Transparent Electrode in Efficient CH3NH3PbI3 Perovskite/Fullerene Planar Heterojunction Hybrid Solar Cells." Advanced Materials (2016).
77 A. Abrusci, S. D. Stranks, P. Docampo, H. L. Yip, A. K. Y. Jen, H. J. Snaith "High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers." Nano Letters , 13, 3124-3128 (2013).
78 H. L. Yip, A. K. Y. Jen "Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells." Energy & Environmental Science , 5, 5994-6011 (2012).
79 K. W. Tsai, C. C. Chueh, S. T. Williams, T. C. Wen, A. K. Jen "High-performance hole-transporting layer-free conventional perovskite/fullerene heterojunction thin-film solar cells." Journal of Materials Chemistry A 3, 9128-9132 (2015).
80 J. Seo, S. Park, Y. C. Kim, N. J. Jeon, J. H. Noh, S. C. Yoon, S. I. Seok "Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells." Energy & Environmental Science , 7, 2642-2646 (2014).
81 Y. Chen, J. Peng, D. Su, X. Chen, Z. Liang "Efficient and Balanced Charge Transport Revealed in Planar Perovskite Solar Cells." ACS Applied Materials & Interfaces , 7, 4471-4475 (2015).
82 J. Min, Z. G. Zhang, Y. Hou, C. O. R. Quiroz, T. Przybilla, C. Bronnbauer, F. Guo, K. Forberich, T. Ameri, E. Spiecker, Y. Li, C. J. Brabec "Interface engineering of perovskite hybrid solar cells with solution-processed perylene–diimide heterojunctions toward high performance." Chemistry of Materials , 27, 227-234 (2014).
83 C. Li, F. wang, J. Xu, B. Zhang, C. Zhang, M. Xiao, S. Dai, Y. Li, Z. Tan "Efficient perovskite/fullerene planar heterojunction solar cells with enhanced charge extraction and suppressed charge recombination." Nanoscale , 7, 9771-9778 (2015).