簡易檢索 / 詳目顯示

研究生: 鄭淑貞
Jheng, Shu-Jhen
論文名稱: 奈米結構脂質載體做為促進慢性傷口癒合蛋白質藥物輸藥系統之研究
Study of nanostructured lipid carriers as topical protein drug delivery system for promoting chronic wound healing
指導教授: 蔡瑞真
Tsai, Jui-Chen
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床藥學與藥物科技研究所
Institute of Clinical Pharmacy and Pharmaceutical sciences
論文出版年: 2017
畢業學年度: 106
語文別: 中文
論文頁數: 85
中文關鍵詞: 蛋白質藥物奈米藥物載體傷口癒合
外文關鍵詞: nanostructured lipid carriers, protein drug delivery, control release, wound healing
相關次數: 點閱:83下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傷口癒合是一種生理反應機制複雜的修復過程,隨著傷口的癒合情形可分為四個階段:止血期、發炎期、增生期、重塑期,依據傷口癒合的時間長短可分為急性以及慢性傷口。而慢性傷口因為比急性傷口之癒合時間更長,所花的成本以及併發感染的風險都比較大。目前已知許多生長因子,如:Epidermal growth factor (EGF), platelet-derived growth factor (PDGF), basic fibroblast growth factor (bFGF)等,在加速慢性傷口癒合扮演重要的角色。
    而本研究所使用的藥品NCKU419,含有EGF-like結構,可以參與調節血液凝結反應與纖維蛋白的溶解,並且在加速慢性傷口的癒合具有很大的潛力。慢性傷口的護理為三至五天更換敷料,然而蛋白質藥物普遍具有半衰期短、穩定性低、價格昂貴等不利臨床使用的因素,因此需要利用可緩釋且安定的劑型來克服這些不利因素。奈米結構脂質載體 (nanostructured lipid carriers, NLC)具有藥物包覆率高、可有效包覆蛋白質藥品、製程快速不繁瑣且可以持續釋放藥品等優點,因此本研究目的為選用不同組成的NLC做為NCKU419的控釋輸藥載體,應用於慢性傷口癒合之促進。
    經預試驗結果,選擇熔點介50~60℃間的固態油ATO5或Geleol,搭配液態油Miglyol 812或Captex 200以製備不同組合與不同比例油脂的NLC,探討其物化特性如粒徑大小與分佈、介面電位等。藥物釋出結果顯示NLC可在三天內穩定釋出近七成的藥物。穿透式電子顯微鏡觀察結果顯示包覆NCKU419的NLC呈實心球狀。動物實驗部分以鏈酶硝化反構體 (Streptozotocin, STZ)誘導C57BL/6小鼠作為糖尿病之動物模式,結果顯示顯示NCKU419之活性並未被NLC的製程破壞,效果優於rhEGF,且可有效降低使用劑量。
    綜合研究結果,本研究設計之NLC處方符合臨床使用之需求,可作為蛋白質藥物輸藥平台的新選擇,應用於促進慢性傷口之癒合。

    The objective of this study was to develop a sustained release protein drug delivery system and apply for promoting chronic wound healing. NCKU419-loaded NLCs were prepared and the characteristics was analyzed by measuring the particles size, polydispersity index (PDI) and zeta potential. Liquid cell transmission electron microscope (TEM) result revealed that NCKU419 was encapsulated in NLC and encapsulation efficiency was more than 90%. The rate of NCKU419 release from different NLC formulations was influenced by their lipid compositions and was sustained for more than 72 hours. Studies on diabetic mouse wound model suggested that NCKU419-NLC 1.2 µg Q3D accelerated chronic wound healing and was similar to rhEGF-NLC 20 µg Q3D, while healing effect of rhEGF-NLC 1.2 µg Q3D was not significantly different from NLC control group. NCKU419-NLC 1.2 µg formulation remained biologically active after one year of storage at 4°C. NCKU419-loaded NLC may have future medical applications for wound care in diabetic patients.

    中文摘要 I 英文延伸摘要 III 誌謝 VI 目錄 VII 表目錄 XI 圖目錄 XIII 縮寫表 XIV 第壹章 文獻回顧 1 第一節 皮膚結構 1 第二節 慢性傷口 5 一、 一般傷口癒合 5 二、 慢性傷口之分類 6 三、 慢性傷口的處置 9 四、 生長因子在慢性傷口扮演的角色 11 五、 生長因子的傳遞系統 15 第三節 奈米結構脂質體傳輸系統 (Nanostructured lipid carrier delivery system, NLC) 19 一、 奈米結構脂質體基本結構與簡介 19 二、 製備奈米結構脂質體之方法 21 第貳章 研究目的 22 第參章 研究材料與儀器 24 第一節 實驗動物 24 第二節 藥品、試劑與耗材 24 第三節 實驗儀器 25 第四節 繪圖與統計分析軟體 26 第肆章 研究設計 27 第一節 材料篩選與預試驗 27 第二節 製備奈米結構脂質體 28 第三節 奈米結構脂質體物化特性評估 29 一、 奈米結構脂質體粒徑大小、分布情形以及介面電位測定 29 二、 液體進樣之穿透式電子顯微鏡 30 第四節 體外載藥釋出評估 30 一、 ELISA分析方法 30 二、 NCKU419載藥率 32 三、 NCKU419體外釋出評估 33 第五節 體外載藥安定性評估 33 一、 外觀、物化特性及藥品釋出評估 33 第六節 生體傷口癒合模式建立 34 一、 糖尿病小鼠之傷口模式流程 34 二、 鏈黴硝化反構體誘導糖尿病小鼠模式 35 三、 動物手術方法 36 四、 傷口癒合評估 37 五、 組織切片染色觀察 38 第七節 統計分析 39 第伍章 研究結果 40 第一節 奈米結構脂質體物化特性評估 40 一、 奈米結構脂質體粒徑大小、分布情形以及介面電位 40 二、 NLC之外觀 47 第二節 體外載藥釋出評估 48 一、 NCKU419載藥率 48 二、 NLC-NCKU419之體外釋出評估 49 第三節 生體傷口癒合評估 52 一、 糖尿病小鼠傷口癒合評估 52 二、 組織切片染色觀察 59 第四節 體外載藥安定性評估 63 一、 外觀、物化特性及藥品釋出評估 63 二、 長時間低溫保存之動物傷口癒合評估 66 第陸章 討論 69 第一節 奈米結構脂質體處方之特性 69 一、 固態與液態脂質的組成與比例 69 二、 奈米結構脂質體載藥評估與釋出分析 71 三、 奈米結構脂質體的長期儲存安定性 73 第二節 生體之傷口癒合 74 一、 動物慢性傷口模式 74 二、 載藥之奈米結構脂質體的傷口癒合情形 76 第三節 奈米結構脂質體的臨床應用可行性 79 第柒章 結論 81 參考文獻 82

    Alemdaroğlu, C., Z. Degim, N. Celebi, M. Şengezer, M. Alömeroglu & A. Nacar (2008) Investigation of epidermal growth factor containing liposome formulation effects on burn wound healing. Journal of Biomedical Materials Research Part A, 85A, 271-283.
    Alemdaroglu, C., Z. Degim, N. Celebi, M. Sengezer, M. Alomeroglu & A. Nacar (2008) Investigation of epidermal growth factor containing liposome formulation effects on burn wound healing. J Biomed Mater Res A, 85, 271-83.
    Alemdaroglu, C., Z. Degim, N. Celebi, F. Zor, S. Ozturk & D. Erdogan (2006) An investigation on burn wound healing in rats with chitosan gel formulation containing epidermal growth factor. Burns, 32, 319-27.
    Allen, T. M. & P. R. Cullis (2013) Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev, 65, 36-48.
    Almousallam, M., C. Moia & H. Zhu (2015) Development of nanostructured lipid carrier for dacarbazine delivery. International Nano Letters, 5, 241-248.
    Barrientos, S., O. Stojadinovic, M. S. Golinko, H. Brem & M. Tomic-Canic (2008) Growth factors and cytokines in wound healing. Wound Repair Regen, 16, 585-601.
    Brownlee, M. (1995) Advanced protein glycosylation in diabetes and aging. Annu Rev Med, 46, 223-34.
    Bryant, R. A. & D. P. Nix. 2015. Acute & Chronic Wounds: Current Management Concepts. Elsevier.
    Chammas, N. K., R. L. Hill & M. E. Edmonds (2016) Increased Mortality in Diabetic Foot Ulcer Patients: The Significance of Ulcer Type. J Diabetes Res, 2016, 2879809.
    Choi, J. S. & H. S. Yoo (2010) Pluronic/chitosan hydrogels containing epidermal growth factor with wound-adhesive and photo-crosslinkable properties. J Biomed Mater Res A, 95, 564-73.
    Chu, Y., D. Yu, P. Wang, J. Xu, D. Li & M. Ding (2010) Nanotechnology promotes the full-thickness diabetic wound healing effect of recombinant human epidermal growth factor in diabetic rats. Wound Repair Regen, 18, 499-505.
    Clogston, J. D. & A. K. Patri (2011) Zeta potential measurement. Methods Mol Biol, 697, 63-70.
    Das, S., W. K. Ng & R. B. Tan (2012) Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? Eur J Pharm Sci, 47, 139-51.
    Demidova-Rice, T. N., M. R. Hamblin & I. M. Herman (2012a) Acute and impaired wound healing: pathophysiology and current methods for drug delivery, part 1: normal and chronic wounds: biology, causes, and approaches to care. Adv Skin Wound Care, 25, 304-14.
    --- (2012b) Acute and impaired wound healing: pathophysiology and current methods for drug delivery, part 2: role of growth factors in normal and pathological wound healing: therapeutic potential and methods of delivery. Adv Skin Wound Care, 25, 349-70.
    Dunn, L., H. C. Prosser, J. T. Tan, L. Z. Vanags, M. K. Ng & C. A. Bursill (2013) Murine model of wound healing. J Vis Exp, e50265.
    Fang, C. L., S. A. Al-Suwayeh & J. Y. Fang (2013) Nanostructured lipid carriers (NLCs) for drug delivery and targeting. Recent Pat Nanotechnol, 7, 41-55.
    Fonder, M. A., G. S. Lazarus, D. A. Cowan, B. Aronson-Cook, A. R. Kohli & A. J. Mamelak (2008) Treating the chronic wound: A practical approach to the care of nonhealing wounds and wound care dressings. J Am Acad Dermatol, 58, 185-206.
    Frykberg, R. G. & J. Banks (2015) Challenges in the Treatment of Chronic Wounds. Adv Wound Care (New Rochelle), 4, 560-582.
    Gainza, G., J. J. Aguirre, J. L. Pedraz, R. M. Hernandez & M. Igartua (2013) rhEGF-loaded PLGA-Alginate microspheres enhance the healing of full-thickness excisional wounds in diabetised Wistar rats. Eur J Pharm Sci, 50, 243-52.
    Gainza, G., W. S. Chu, R. H. Guy, J. L. Pedraz, R. M. Hernandez, B. Delgado-Charro & M. Igartua (2015a) Development and in vitro evaluation of lipid nanoparticle-based dressings for topical treatment of chronic wounds. Int J Pharm, 490, 404-11.
    Gainza, G., M. Pastor, J. J. Aguirre, S. Villullas, J. L. Pedraz, R. M. Hernandez & M. Igartua (2014) A novel strategy for the treatment of chronic wounds based on the topical administration of rhEGF-loaded lipid nanoparticles: In vitro bioactivity and in vivo effectiveness in healing-impaired db/db mice. Journal of Controlled Release, 185, 51-61.
    Gainza, G., S. Villullas, J. L. Pedraz, R. M. Hernandez & M. Igartua (2015b) Advances in drug delivery systems (DDSs) to release growth factors for wound healing and skin regeneration. Nanomedicine, 11, 1551-73.
    Gantwerker, E. A. & D. B. Hom (2012) Skin: histology and physiology of wound healing. Clin Plast Surg, 39, 85-97.
    Garcia-Orue, I., G. Gainza, F. B. Gutierrez, J. J. Aguirre, C. Evora, J. L. Pedraz, R. M. Hernandez, A. Delgado & M. Igartua (2017) Novel nanofibrous dressings containing rhEGF and Aloe vera for wound healing applications. Int J Pharm, 523, 556-566.
    Han, G. & R. Ceilley (2017) Chronic Wound Healing: A Review of Current Management and Treatments. Adv Ther, 34, 599-610.
    Huang, S., T. Deng, H. Wu, F. Chen & Y. Jin (2006) Wound dressings containing bFGF-impregnated microspheres. Journal of Microencapsulation, 23, 277-290.
    Huang, Z. R., S. C. Hua, Y. L. Yang & J. Y. Fang (2008) Development and evaluation of lipid nanoparticles for camptothecin delivery: a comparison of solid lipid nanoparticles, nanostructured lipid carriers, and lipid emulsion. Acta Pharmacol Sin, 29, 1094-102.
    Jeon, O., S. J. Song, S. W. Kang, A. J. Putnam & B. S. Kim (2007) Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly(L-lactic-co-glycolic acid) scaffold. Biomaterials, 28, 2763-71.
    Lai, H. J., C. H. Kuan, H. C. Wu, J. C. Tsai, T. M. Chen, D. J. Hsieh & T. W. Wang (2014) Tailored design of electrospun composite nanofibers with staged release of multiple angiogenic growth factors for chronic wound healing. Acta Biomater, 10, 4156-66.
    Loo, C., M. Basri, R. Ismail, H. Lau, B. Tejo, M. Kanthimathi, H. Hassan & Y. Choo (2013) Effect of compositions in nanostructured lipid carriers (NLC) on skin hydration and occlusion. Int J Nanomedicine, 8, 13-22.
    Mescher, A. 2015. Junqueira's Basic Histology: Text and Atlas, Fourteenth Edition. McGraw-Hill Education.
    Michaels, J. t., S. S. Churgin, K. M. Blechman, M. R. Greives, S. Aarabi, R. D. Galiano & G. C. Gurtner (2007) db/db mice exhibit severe wound-healing impairments compared with other murine diabetic strains in a silicone-splinted excisional wound model. Wound Repair Regen, 15, 665-70.
    Park, J. W., S. R. Hwang & I. S. Yoon (2017) Advanced Growth Factor Delivery Systems in Wound Management and Skin Regeneration. Molecules, 22.
    Pisal, D. S., M. P. Kosloski & S. V. Balu-Iyer (2010) Delivery of therapeutic proteins. J Pharm Sci, 99, 2557-75.
    Schneider, A., X. Y. Wang, D. L. Kaplan, J. A. Garlick & C. Egles (2009) Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound healing. Acta Biomater, 5, 2570-8.
    Stetefeld, J., S. A. McKenna & T. R. Patel (2016) Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev, 8, 409-427.
    Teeranachaideekul, V., E. B. Souto, V. B. Junyaprasert & R. H. Muller (2007) Cetyl palmitate-based NLC for topical delivery of Coenzyme Q(10) - development, physicochemical characterization and in vitro release studies. Eur J Pharm Biopharm, 67, 141-8.
    Thassu, D., M. Deleers & Y. V. Pathak. 2007. Nanoparticulate Drug Delivery Systems. CRC Press.
    Toh, M.-R. & G. N. C. Chiu (2013) Liposomes as sterile preparations and limitations of sterilisation techniques in liposomal manufacturing. Asian Journal of Pharmaceutical Sciences, 8, 88-95.
    Torchilin, V. P. 2006. Nanoparticulates as Drug Carriers. Imperial College Press.
    Velmurugan, R. & S. Selvamuthukumar (2016) Development and optimization of ifosfamide nanostructured lipid carriers for oral delivery using response surface methodology. Applied Nanoscience, 6, 159-173.
    Wong, V. W., M. Sorkin, J. P. Glotzbach, M. T. Longaker & G. C. Gurtner (2011) Surgical approaches to create murine models of human wound healing. J Biomed Biotechnol, 2011, 969618.
    Wu, J., J. Ye, J. Zhu, Z. Xiao, C. He, H. Shi, Y. Wang, C. Lin, H. Zhang, Y. Zhao, X. Fu, H. Chen, X. Li, L. Li, J. Zheng & J. Xiao (2016) Heparin-Based Coacervate of FGF2 Improves Dermal Regeneration by Asserting a Synergistic Role with Cell Proliferation and Endogenous Facilitated VEGF for Cutaneous Wound Healing. Biomacromolecules, 17, 2168-77.
    劉冠琳 (2015) 生物可分解水凝膠作為局部蛋白質藥物載體用於傷口癒合之研究. 國立成功大學
    曾湜雯 (2016)。專利編號M530469。經濟部智慧財產局。

    無法下載圖示 校內:2025-04-19公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE