| 研究生: |
鄭淑貞 Jheng, Shu-Jhen |
|---|---|
| 論文名稱: |
奈米結構脂質載體做為促進慢性傷口癒合蛋白質藥物輸藥系統之研究 Study of nanostructured lipid carriers as topical protein drug delivery system for promoting chronic wound healing |
| 指導教授: |
蔡瑞真
Tsai, Jui-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 臨床藥學與藥物科技研究所 Institute of Clinical Pharmacy and Pharmaceutical sciences |
| 論文出版年: | 2017 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 蛋白質藥物 、奈米藥物載體 、傷口癒合 |
| 外文關鍵詞: | nanostructured lipid carriers, protein drug delivery, control release, wound healing |
| 相關次數: | 點閱:83 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傷口癒合是一種生理反應機制複雜的修復過程,隨著傷口的癒合情形可分為四個階段:止血期、發炎期、增生期、重塑期,依據傷口癒合的時間長短可分為急性以及慢性傷口。而慢性傷口因為比急性傷口之癒合時間更長,所花的成本以及併發感染的風險都比較大。目前已知許多生長因子,如:Epidermal growth factor (EGF), platelet-derived growth factor (PDGF), basic fibroblast growth factor (bFGF)等,在加速慢性傷口癒合扮演重要的角色。
而本研究所使用的藥品NCKU419,含有EGF-like結構,可以參與調節血液凝結反應與纖維蛋白的溶解,並且在加速慢性傷口的癒合具有很大的潛力。慢性傷口的護理為三至五天更換敷料,然而蛋白質藥物普遍具有半衰期短、穩定性低、價格昂貴等不利臨床使用的因素,因此需要利用可緩釋且安定的劑型來克服這些不利因素。奈米結構脂質載體 (nanostructured lipid carriers, NLC)具有藥物包覆率高、可有效包覆蛋白質藥品、製程快速不繁瑣且可以持續釋放藥品等優點,因此本研究目的為選用不同組成的NLC做為NCKU419的控釋輸藥載體,應用於慢性傷口癒合之促進。
經預試驗結果,選擇熔點介50~60℃間的固態油ATO5或Geleol,搭配液態油Miglyol 812或Captex 200以製備不同組合與不同比例油脂的NLC,探討其物化特性如粒徑大小與分佈、介面電位等。藥物釋出結果顯示NLC可在三天內穩定釋出近七成的藥物。穿透式電子顯微鏡觀察結果顯示包覆NCKU419的NLC呈實心球狀。動物實驗部分以鏈酶硝化反構體 (Streptozotocin, STZ)誘導C57BL/6小鼠作為糖尿病之動物模式,結果顯示顯示NCKU419之活性並未被NLC的製程破壞,效果優於rhEGF,且可有效降低使用劑量。
綜合研究結果,本研究設計之NLC處方符合臨床使用之需求,可作為蛋白質藥物輸藥平台的新選擇,應用於促進慢性傷口之癒合。
The objective of this study was to develop a sustained release protein drug delivery system and apply for promoting chronic wound healing. NCKU419-loaded NLCs were prepared and the characteristics was analyzed by measuring the particles size, polydispersity index (PDI) and zeta potential. Liquid cell transmission electron microscope (TEM) result revealed that NCKU419 was encapsulated in NLC and encapsulation efficiency was more than 90%. The rate of NCKU419 release from different NLC formulations was influenced by their lipid compositions and was sustained for more than 72 hours. Studies on diabetic mouse wound model suggested that NCKU419-NLC 1.2 µg Q3D accelerated chronic wound healing and was similar to rhEGF-NLC 20 µg Q3D, while healing effect of rhEGF-NLC 1.2 µg Q3D was not significantly different from NLC control group. NCKU419-NLC 1.2 µg formulation remained biologically active after one year of storage at 4°C. NCKU419-loaded NLC may have future medical applications for wound care in diabetic patients.
Alemdaroğlu, C., Z. Degim, N. Celebi, M. Şengezer, M. Alömeroglu & A. Nacar (2008) Investigation of epidermal growth factor containing liposome formulation effects on burn wound healing. Journal of Biomedical Materials Research Part A, 85A, 271-283.
Alemdaroglu, C., Z. Degim, N. Celebi, M. Sengezer, M. Alomeroglu & A. Nacar (2008) Investigation of epidermal growth factor containing liposome formulation effects on burn wound healing. J Biomed Mater Res A, 85, 271-83.
Alemdaroglu, C., Z. Degim, N. Celebi, F. Zor, S. Ozturk & D. Erdogan (2006) An investigation on burn wound healing in rats with chitosan gel formulation containing epidermal growth factor. Burns, 32, 319-27.
Allen, T. M. & P. R. Cullis (2013) Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev, 65, 36-48.
Almousallam, M., C. Moia & H. Zhu (2015) Development of nanostructured lipid carrier for dacarbazine delivery. International Nano Letters, 5, 241-248.
Barrientos, S., O. Stojadinovic, M. S. Golinko, H. Brem & M. Tomic-Canic (2008) Growth factors and cytokines in wound healing. Wound Repair Regen, 16, 585-601.
Brownlee, M. (1995) Advanced protein glycosylation in diabetes and aging. Annu Rev Med, 46, 223-34.
Bryant, R. A. & D. P. Nix. 2015. Acute & Chronic Wounds: Current Management Concepts. Elsevier.
Chammas, N. K., R. L. Hill & M. E. Edmonds (2016) Increased Mortality in Diabetic Foot Ulcer Patients: The Significance of Ulcer Type. J Diabetes Res, 2016, 2879809.
Choi, J. S. & H. S. Yoo (2010) Pluronic/chitosan hydrogels containing epidermal growth factor with wound-adhesive and photo-crosslinkable properties. J Biomed Mater Res A, 95, 564-73.
Chu, Y., D. Yu, P. Wang, J. Xu, D. Li & M. Ding (2010) Nanotechnology promotes the full-thickness diabetic wound healing effect of recombinant human epidermal growth factor in diabetic rats. Wound Repair Regen, 18, 499-505.
Clogston, J. D. & A. K. Patri (2011) Zeta potential measurement. Methods Mol Biol, 697, 63-70.
Das, S., W. K. Ng & R. B. Tan (2012) Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? Eur J Pharm Sci, 47, 139-51.
Demidova-Rice, T. N., M. R. Hamblin & I. M. Herman (2012a) Acute and impaired wound healing: pathophysiology and current methods for drug delivery, part 1: normal and chronic wounds: biology, causes, and approaches to care. Adv Skin Wound Care, 25, 304-14.
--- (2012b) Acute and impaired wound healing: pathophysiology and current methods for drug delivery, part 2: role of growth factors in normal and pathological wound healing: therapeutic potential and methods of delivery. Adv Skin Wound Care, 25, 349-70.
Dunn, L., H. C. Prosser, J. T. Tan, L. Z. Vanags, M. K. Ng & C. A. Bursill (2013) Murine model of wound healing. J Vis Exp, e50265.
Fang, C. L., S. A. Al-Suwayeh & J. Y. Fang (2013) Nanostructured lipid carriers (NLCs) for drug delivery and targeting. Recent Pat Nanotechnol, 7, 41-55.
Fonder, M. A., G. S. Lazarus, D. A. Cowan, B. Aronson-Cook, A. R. Kohli & A. J. Mamelak (2008) Treating the chronic wound: A practical approach to the care of nonhealing wounds and wound care dressings. J Am Acad Dermatol, 58, 185-206.
Frykberg, R. G. & J. Banks (2015) Challenges in the Treatment of Chronic Wounds. Adv Wound Care (New Rochelle), 4, 560-582.
Gainza, G., J. J. Aguirre, J. L. Pedraz, R. M. Hernandez & M. Igartua (2013) rhEGF-loaded PLGA-Alginate microspheres enhance the healing of full-thickness excisional wounds in diabetised Wistar rats. Eur J Pharm Sci, 50, 243-52.
Gainza, G., W. S. Chu, R. H. Guy, J. L. Pedraz, R. M. Hernandez, B. Delgado-Charro & M. Igartua (2015a) Development and in vitro evaluation of lipid nanoparticle-based dressings for topical treatment of chronic wounds. Int J Pharm, 490, 404-11.
Gainza, G., M. Pastor, J. J. Aguirre, S. Villullas, J. L. Pedraz, R. M. Hernandez & M. Igartua (2014) A novel strategy for the treatment of chronic wounds based on the topical administration of rhEGF-loaded lipid nanoparticles: In vitro bioactivity and in vivo effectiveness in healing-impaired db/db mice. Journal of Controlled Release, 185, 51-61.
Gainza, G., S. Villullas, J. L. Pedraz, R. M. Hernandez & M. Igartua (2015b) Advances in drug delivery systems (DDSs) to release growth factors for wound healing and skin regeneration. Nanomedicine, 11, 1551-73.
Gantwerker, E. A. & D. B. Hom (2012) Skin: histology and physiology of wound healing. Clin Plast Surg, 39, 85-97.
Garcia-Orue, I., G. Gainza, F. B. Gutierrez, J. J. Aguirre, C. Evora, J. L. Pedraz, R. M. Hernandez, A. Delgado & M. Igartua (2017) Novel nanofibrous dressings containing rhEGF and Aloe vera for wound healing applications. Int J Pharm, 523, 556-566.
Han, G. & R. Ceilley (2017) Chronic Wound Healing: A Review of Current Management and Treatments. Adv Ther, 34, 599-610.
Huang, S., T. Deng, H. Wu, F. Chen & Y. Jin (2006) Wound dressings containing bFGF-impregnated microspheres. Journal of Microencapsulation, 23, 277-290.
Huang, Z. R., S. C. Hua, Y. L. Yang & J. Y. Fang (2008) Development and evaluation of lipid nanoparticles for camptothecin delivery: a comparison of solid lipid nanoparticles, nanostructured lipid carriers, and lipid emulsion. Acta Pharmacol Sin, 29, 1094-102.
Jeon, O., S. J. Song, S. W. Kang, A. J. Putnam & B. S. Kim (2007) Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly(L-lactic-co-glycolic acid) scaffold. Biomaterials, 28, 2763-71.
Lai, H. J., C. H. Kuan, H. C. Wu, J. C. Tsai, T. M. Chen, D. J. Hsieh & T. W. Wang (2014) Tailored design of electrospun composite nanofibers with staged release of multiple angiogenic growth factors for chronic wound healing. Acta Biomater, 10, 4156-66.
Loo, C., M. Basri, R. Ismail, H. Lau, B. Tejo, M. Kanthimathi, H. Hassan & Y. Choo (2013) Effect of compositions in nanostructured lipid carriers (NLC) on skin hydration and occlusion. Int J Nanomedicine, 8, 13-22.
Mescher, A. 2015. Junqueira's Basic Histology: Text and Atlas, Fourteenth Edition. McGraw-Hill Education.
Michaels, J. t., S. S. Churgin, K. M. Blechman, M. R. Greives, S. Aarabi, R. D. Galiano & G. C. Gurtner (2007) db/db mice exhibit severe wound-healing impairments compared with other murine diabetic strains in a silicone-splinted excisional wound model. Wound Repair Regen, 15, 665-70.
Park, J. W., S. R. Hwang & I. S. Yoon (2017) Advanced Growth Factor Delivery Systems in Wound Management and Skin Regeneration. Molecules, 22.
Pisal, D. S., M. P. Kosloski & S. V. Balu-Iyer (2010) Delivery of therapeutic proteins. J Pharm Sci, 99, 2557-75.
Schneider, A., X. Y. Wang, D. L. Kaplan, J. A. Garlick & C. Egles (2009) Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound healing. Acta Biomater, 5, 2570-8.
Stetefeld, J., S. A. McKenna & T. R. Patel (2016) Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev, 8, 409-427.
Teeranachaideekul, V., E. B. Souto, V. B. Junyaprasert & R. H. Muller (2007) Cetyl palmitate-based NLC for topical delivery of Coenzyme Q(10) - development, physicochemical characterization and in vitro release studies. Eur J Pharm Biopharm, 67, 141-8.
Thassu, D., M. Deleers & Y. V. Pathak. 2007. Nanoparticulate Drug Delivery Systems. CRC Press.
Toh, M.-R. & G. N. C. Chiu (2013) Liposomes as sterile preparations and limitations of sterilisation techniques in liposomal manufacturing. Asian Journal of Pharmaceutical Sciences, 8, 88-95.
Torchilin, V. P. 2006. Nanoparticulates as Drug Carriers. Imperial College Press.
Velmurugan, R. & S. Selvamuthukumar (2016) Development and optimization of ifosfamide nanostructured lipid carriers for oral delivery using response surface methodology. Applied Nanoscience, 6, 159-173.
Wong, V. W., M. Sorkin, J. P. Glotzbach, M. T. Longaker & G. C. Gurtner (2011) Surgical approaches to create murine models of human wound healing. J Biomed Biotechnol, 2011, 969618.
Wu, J., J. Ye, J. Zhu, Z. Xiao, C. He, H. Shi, Y. Wang, C. Lin, H. Zhang, Y. Zhao, X. Fu, H. Chen, X. Li, L. Li, J. Zheng & J. Xiao (2016) Heparin-Based Coacervate of FGF2 Improves Dermal Regeneration by Asserting a Synergistic Role with Cell Proliferation and Endogenous Facilitated VEGF for Cutaneous Wound Healing. Biomacromolecules, 17, 2168-77.
劉冠琳 (2015) 生物可分解水凝膠作為局部蛋白質藥物載體用於傷口癒合之研究. 國立成功大學
曾湜雯 (2016)。專利編號M530469。經濟部智慧財產局。
校內:2025-04-19公開