| 研究生: |
林書宇 Lin, Shu-Yu |
|---|---|
| 論文名稱: |
釩摻雜氧化鋅奈米柱陣列壓電壓力感測器 Vanadium-doped ZnO nanorod-array piezoelectric pressure sensor |
| 指導教授: |
黃肇瑞
Huang, Jow-Lay |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 氧化鋅 、釩摻雜 、奈米柱陣列 、壓力感測器 、水熱法 |
| 外文關鍵詞: | ZnO, vanadium doping, nanorods array, pressure sensor, hydrothermal method |
| 相關次數: | 點閱:155 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗探討摻雜釩之氧化鋅奈米柱的合成與特性分析,與其元件之壓力敏感度測試,首先以磁控濺鍍(R.F. sputtering)法在P-type矽基板上沉積氧化鋅晶種層,厚度約為100奈米,再用水熱法製備沿C-軸方向成長之釩摻雜的氧化鋅奈米柱,並觀察摻雜不同釩濃度對其形態及光學性質與壓電表現的影響。
在氧化鋅中摻雜釩的主要目的為提升壓電性質並提高載子濃度,以便應用於壓力感測元件,本實驗透過調控水熱法生長溶液中五氧化二釩濃度來達到不同程度的摻雜,從掃瞄式電子顯微鏡與X 射線繞射儀之結果可以得知在五氧化二釩濃度範圍從0到1.25mM皆為纖鋅礦結構,並無其他相出現且皆具有良好[002]優選方位,代表釩是以摻雜的方式進入氧化鋅晶體,但在濃度超過0.75mM後有部分出現二維片狀結構,此結構對後續元件表現有不良影響,透過螢光光譜儀分析可以觀察到0.5-1.25mM範圍內氧化鋅UV峰有明顯藍移現象,與預期N型釩摻雜之結果相符。適量的釩摻雜有助於抑制部分本質缺陷,從共振拉曼可以看到0-0.75mM範圍缺陷有減少趨勢並在0.75mM達到最佳,從化學鍵結及元素成分分析(XPS、EDS)可以觀察到釩的原子百分比有隨著提高五氧化二釩濃度而增加,五價釩離子比例也有此趨勢且在0.75mM以上時該比例大過於五價釩離子。
本實驗元件設計由一PN接面(p-Si與n-Zn)與一蕭特基接面(n-Zn與Au)組成,由於氧化鋅之壓電效應,壓電勢所造成之能帶傾斜會使載子往PN接面處飄移從而增加電流,而蕭特基接面則是提高閾值電壓,比較受壓與未受壓之電流增加量即可得知氧化鋅壓電效應強弱,並計算元件之電流敏感度與壓力敏感度,本實驗在0.75mM樣品中取得最佳輸出表現,電流敏感度最大值172%,壓力敏感度最大值230.3MPa-1。
We successfully fabricated well-aligned vanadium-doped ZnO nanorods array on (111) p-type silicon substrate by hydrothermal method as a pressure sensor. All samples had [0002] preferential orientation. By adjusting the concentration of V2O5 in the grow solution , We can get different doping level of the ZnO nanorods. Characterize the different doping concentration ZnO nanorods to observe the affects due to vanadium doping. Vanadium commonly exists in oxidation states of V3+ and V5+. V3+ has a larger ionic radius, while V5+ has a smaller ionic radius compared to zinc (Zn). We compared the XPS data that at 0.75mM [V2O5] V5+ percentage start becoming higher than V3+ percentage. EDS also showed an increasing trend of V at%. Resonance Raman scattering(RRS) also showed that 0.75mM [V2O5] has best crystal quality. Summing those benefits, 0.75mM [V2O5] is the most optimal condition to grow Vanadium doped ZnO nanorods array and its current sensitivity reaches 172% and stress sensitivity reaches 230.3MPa-1.
1. Morkoç, H. and Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology. 2009.
2. Özgür, Ü., et al., A comprehensive review of ZnO materials and devices. Journal of Applied Physics, 2005. 98(4): p. 041301.
3. Hanada, T., Basic Properties of ZnO, GaN, and Related Materials, in Oxide and Nitride Semiconductors: Processing, Properties, and Applications, T. Yao and S.-K. Hong, Editors. 2009, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 1-19.
4. Feng, X.-Y., et al., Electronic Structure and Energy Band of IIIA Doped Group ZnO Nanosheets. Journal of Nanomaterials, 2013. 2013: p. 181979.
5. Janotti, A. and C.G. Van de Walle, Native point defects in ZnO. Physical Review B, 2007. 76(16): p. 165202.
6. Brahma, S., et al., Self-assembled ZnO nanoparticles on ZnO microsheet: Ultrafast synthesis and tunable photoluminescence properties. Journal of Physics D: Applied Physics, 2015. 48.
7. Turner, R.C., et al., Materials for high temperature acoustic and vibration sensors: A review. Applied Acoustics, 1994. 41(4): p. 299-324.
8. Akiyama, M., et al., Enhancement of Piezoelectric Response in Scandium Aluminum Nitride Alloy Thin Films Prepared by Dual Reactive Cosputtering. Advanced Materials, 2009. 21(5): p. 593-596.
9. Wang, Z.L., Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics. Nano Today, 2010. 5(6): p. 540-552.
10. Fan, F.R., W. Tang, and Z.L. Wang, Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics. Advanced Materials, 2016. 28(22): p. 4283-4305.
11. Gao, Z., et al., Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor. Journal of Applied Physics, 2009. 105(11): p. 113707.
12. Eitel, R.E., Novel piezoelectric ceramics: Development of high temperature, high performance piezoelectrics on the basis of structure. 2003.
13. Huo, L., et al., Smart washer—a piezoceramic-based transducer to monitor looseness of bolted connection. Smart Materials and Structures, 2017. 26(2): p. 025033.
14. Schubert, M., Infrared ellipsometry on semiconductor layer structures phonons, plasmons, and polaritons. Springer Tracts in Modern Physics, 2005. 209: p. 1-190.
15. https://fr.wikipedia.org/wiki/Polaron
16. Morrison, J.L., et al., MgZnO Nanocrystallites: Photoluminescence and
Phonon Properties. MRS Online Proceedings Library (OPL), 2005. 892.
17. Scott, J., UV resonant Raman scattering in ZnO. Physical Review B, 1970.
2(4): p. 1209.
18. Martin, R.M. and C.M. Varma, Cascade Theory of Inelastic Scattering of Light. Physical Review Letters, 1971. 26(20): p. 1241-1244.
19. Gandhi, A.C., et al. New Insights into the Role of Weak Electron–Phonon Coupling in Nanostructured ZnO Thin Films. Nanomaterials, 2018. 8, DOI: 10.3390/nano8080632.
20. Cheng, H.-M., et al., Enhanced Resonant Raman Scattering and Electron−Phonon Coupling from Self-Assembled Secondary ZnO Nanoparticles. The Journal of Physical Chemistry B, 2005. 109(39): p. 18385-18390.
21. Cheng, H.-M., et al., Size dependence of photoluminescence and resonant Raman scattering from ZnO quantum dots. Applied Physics Letters, 2006. 88: p. 261909-261909.
22. Ray, S.C., et al., Size dependence of the electronic structures and electron-phonon coupling in ZnO quantum dots. Applied Physics Letters, 2007. 91(26): p. 262101.
23. Zhang, X.T., et al., Resonant Raman scattering and photoluminescence from high-quality nanocrystalline ZnO thin films prepared by thermal oxidation of ZnS thin films. Journal of Physics D: Applied Physics, 2001. 34(24): p. 3430.
24. Chen, Y., et al., Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire: Growth and characterization. Journal of Applied Physics, 1998. 84(7): p. 3912-3918.
25. Wu, J.-J. and S.-C. Liu, Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition. Advanced Materials, 2002. 14(3): p. 215-218.
26. Baratto, C., Growth and properties of ZnO nanorods by RF-sputtering for detection of toxic gases. RSC Advances, 2018. 8(56): p. 32038-32043.
27. Hejazi, S.R., H.R.M. Hosseini, and M.S. Ghamsari, The role of reactants and droplet interfaces on nucleation and growth of ZnO nanorods synthesized by vapor–liquid–solid (VLS) mechanism. Journal of Alloys and Compounds, 2008. 455(1): p. 353-357.
28. Wagner, R.S. and W.C. Ellis, VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH. Applied Physics Letters, 2004. 4(5): p. 89-90.
29. Xia, Y., et al., One-Dimensional Nanostructures: Synthesis, Characterization, and Applications. Advanced Materials, 2003. 15(5): p. 353-389.
30. Polsongkram, D., et al., Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method. Physica B: Condensed Matter, 2008. 403(19): p. 3713-3717.
31. Laudise, R.A. and A.A. Ballman, HYDROTHERMAL SYNTHESIS OF ZINC OXIDE AND ZINC SULFIDE1. The Journal of Physical Chemistry, 1960. 64(5): p. 688-691.
32. Pan, F., et al., Giant piezoresponse and promising application of environmental friendly small-ion-doped ZnO. Science China Technological Sciences, 2012. 55(2): p. 421-436.
33. Wang, Z.L., Nanopiezotronics. Advanced Materials, 2007. 19(6): p. 889-892.
34. Chang, S.-J., et al., A ZnO nanowire vacuum pressure sensor. Nanotechnology, 2008. 19(9): p. 095505.
35. Zheng, X.J., et al., A vacuum pressure sensor based on ZnO nanobelt film. Nanotechnology, 2011. 22(43): p. 435501.
36. Tan, Y., et al., High-performance textile piezoelectric pressure sensor with novel structural hierarchy based on ZnO nanorods array for wearable application. Nano Research, 2021. 14(11): p. 3969-3976.
37. Zhang, Z., et al., Highly efficient piezotronic strain sensors with symmetrical Schottky contacts on the monopolar surface of ZnO nanobelts. Nanoscale, 2015. 7(5): p. 1796-1801.
38. Liao, X., et al., Enhanced performance of ZnO piezotronic pressure sensor through electron-tunneling modulation of MgO nanolayer. ACS Appl Mater Interfaces, 2015. 7(3): p. 1602-7.
39. https://zh.wikipedia.org/zh-tw/Pn%E7%BB%93
40. Wang, Z.L., Progress in Piezotronics and Piezo-Phototronics. Advanced Materials, 2012. 24(34): p. 4632-4646.
41. 半導體物理與元件, Donald A. Neamen 著, 楊賜麟譯, 滄海書局(2005)
42. https://highscope.ch.ntu.edu.tw/wordpress/?p=70378
43. Gupta, M.K., et al., Two-Dimensional Vanadium-Doped ZnO Nanosheet-Based Flexible Direct Current Nanogenerator. ACS Nano, 2013. 7(10): p. 8932-8939.
44. Wang, Y., et al., Origin of (103) plane of ZnO films deposited by RF magnetron sputtering. Journal of Materials Science: Materials in Electronics, 2013. 24(10): p. 3764-3767.
45. Abaira, R., et al., Synthesis and structural properties of vanadium doped zinc oxide. Superlattices and Microstructures, 2015. 86: p. 438-445.
46. Wang, H., et al., Microstructural and optical characteristics of solution-grown Ga-doped ZnO nanorod arrays. Nanotechnology, 2008. 19(7): p. 075607.
47. Wang, X.B., et al., Microstructure and properties of Cu-doped ZnO films prepared by dc reactive magnetron sputtering. Journal of Physics D: Applied Physics, 2005. 38(22): p. 4104.
48. Luo, J.T., et al., Microstructure and photoluminescence study of vanadium-doped ZnO films. Journal of Physics D: Applied Physics, 2009. 42(11): p. 115109.
49. Li, P., et al., Calibration on force upon the surface of single ZnO nanowire applied by AFM tip with different scanning angles †. 2015.
50. Yang, Q., et al., Enhancing Light Emission of ZnO Microwire-Based Diodes by Piezo-Phototronic Effect. Nano Letters, 2011. 11(9): p. 4012-4017.
51. Harnack, O., et al., Rectifying Behavior of Electrically Aligned ZnO Nanorods. Nano Letters, 2003. 3(8): p. 1097-1101.
52. Sze, S., Physics of semiconductor devices//(Book). New York, Wiley-Interscience, 1981. 878 p, 1981.
校內:2027-02-10公開