簡易檢索 / 詳目顯示

研究生: 林慧雯
Lin, Hui-Wen
論文名稱: 考慮碼頭排序與前置理貨時間之車輛途程問題最佳化研究-以J公司為例
Optimization of Vehicle Routing Problem Considering Dock Sequencing and Pre-loading Time: A Case Study of Company J
指導教授: 王逸琳
Wang, I-Lin
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系碩士在職專班
Department of Industrial and Information Management (on the job class)
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 68
中文關鍵詞: 自建物流路線排程整數規劃貪婪演算法鄰域搜尋演算法
外文關鍵詞: in-house logistics, delivery routes, integer programming, greedy algorithm, neighborhood search algorithm
相關次數: 點閱:64下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自2020年全球爆發COVID-19疫情以來,全球網購業績皆有大幅明顯增長,其中影響最大的產業之一就是物流業。目前已有多家本土與外資電商自建物流系統與車隊,除了在地化的物流中心,更提升到跨國的貨物配送。因此,物流效率己成為銷售不可或缺的重要一環。自建物流車隊的優點除了能擁有配送的控制權,更能提高企業品牌價值。然而在配送效率上卻可能不如專業物流的問題,本論文即針對自建的物流車隊如何提高配送效率為研究重點,希望能發展有系統的處理方式以降低成本提高獲利及客戶滿意度。本研究中以某燈具買賣公司J公司的南部分公司為例,研究在碼頭與車輛不對等、配送時程需及時之情況下,以整數規劃建構配送員總工時及總成本最小化的數學模式,該模式雖可求得精確最佳解但耗時甚久,因此本研究再設計高效的貪婪演算法,先計算不錯的物流配送路線排程,再推導對應的貨車碼頭指派與排序,並利用三種鄰域搜尋演算法進一步改善所得解之品質,進而提升企業的獲利與提高客戶之滿意度。以實際歷史訂單資料進行測試後,確認本研究所提出的求解方法可減少車輛的使用,並減少配送人員配送超時的情況,逹成總成本最低的配置決策目標。

    This study addresses the challenges faced by in-house logistics fleets in maintaining efficiency and customer satisfaction. Using the southern branch of J Company, a lighting company, as a case study, the research develops a mathematical model using integer programming to optimize delivery routes and dock assignments. The model considers the imbalance between docks and vehicles, timely delivery schedules, and the minimization of employee work hours and costs.Due to the complexity of the mathematical model, the study proposes a greedy algorithm to generate initial solutions and employs three neighborhood search algorithms to improve solution quality. The algorithms are tested using historical order data from J Company at three different scales: small, medium, and large. The results demonstrate that the proposed method effectively reduces vehicle usage, overtime for delivery personnel, and total delivery time. For small-scale orders, the optimized solution achieves a 7.3% reduction in total delivery time compared to the initial solution. Medium-scale orders show an 11% reduction, while large-scale orders exhibit a 5% reduction in total delivery time and a 12% improvement in vehicle utilization.The study highlights the potential for cost savings and improved customer satisfaction through the implementation of systematic optimization methods in in-house logistics management. Future research directions include integrating real-time traffic information, enhancing algorithm efficiency, refining cargo volume calculations, and considering customer waiting times to further improve the practicality and effectiveness of the proposed approach.

    第一章 緒論 1 1.1研究背景與動機 1 1.2研究目的 2 1.3論文架構 3 第二章 文獻探討 4 2.1車輛途程問題 4 2.2 車輛途程問題之相關特性 5 2.2.1 包裝限制式 6 2.2.2 時間窗口 7 2.2.3 回配送站次數 7 2.3車輛途程問題之研究方法 8 2.4小結 12 第三章 研究方法 13 3.1問題描述與假設 13 3.1.1 問題描述 13 3.1.2 問題假設 14 3.2 數學規劃模式 15 3.2.1 問題設定 15 3.2.2 集合表及參數表 15 3.2.3目標式與限制式 17 3.3 模型測試 22 3.4 小結 25 第四章 演算法設計 26 4.1貪婪演算法設計基礎 26 4.2 鄰域搜尋演算法 30 4.2.1 or-opt演算法 31 4.2.2 2-opt演算法 32 4.2.3 cross exchange演算法 34 4.2.4鄰域搜尋路徑改善演算法流程說明 36 4.2.5碼頭與車輛配對最佳化演算法流程說明 37 4.3 演算法與model解之比較 38 4.4演算法套用歷史訂單資訊 39 4.4.1小規模訂單量(台南地區) 39 4.4.2中規模訂單量(台南及高雄地區) 41 4.4.3大規模訂單量(雲嘉南、高雄及屏東地區) 45 4.5 小結 49 第五章 結論與未來研究 50 5.1結論 50 5.2 未來研究方向 51 參考文獻 53

    Altabeeb, A. M., Mohsen, A. M., Abualigah, L., & Ghallab, A. (2021). Solving capacitated vehicle routing problem using cooperative firefly algorithm. Applied Soft Computing, 108, 107403.
    Anggodo, Y. P., Ariyani, A. K., Ardi, M. K., & Mahmudy, W. F. (2017). Optimization of multi-trip vehicle routing problem with time windows using genetic algorithm. Journal of Environmental Engineering and Sustainable Technology, 3(2), 92-97.
    Baker, E. K., & Schaffer, J. R. (1986). Solution improvement heuristics for the vehicle routing and scheduling problem with time window constraints. American Journal of Mathematical and Management Sciences, 6(3-4), 261-300.
    Chen, J. F. (2006). Approaches for the vehicle routing problem with simultaneous deliveries and pickups. Journal of the Chinese Institute of Industrial Engineers, 23(2), 141-150.
    Dantzig, G. B., & Ramser, J. H. (1959). The truck dispatching problem. Management science, 6(1), 80-91.
    Escobar-Falcón, L. M., Álvarez-Martínez, D., Granada-Echeverri, M., Escobar, J. W., & Romero-Lázaro, R. A. (2016). A matheuristic algorithm for the three-dimensional loading capacitated vehicle routing problem (3L-CVRP). Revista Facultad de Ingeniería Universidad de Antioquia, (78), 09-20.
    Fenton, A. (2016). The bees algorithm for the vehicle routing problem. arXiv preprint arXiv:1605.05448.
    Gendreau, M., Iori, M., Laporte, G., & Martello, S. (2006). A tabu search algorithm for a routing and container loading problem. Transportation Science, 40(3), 342-350.
    Goel, R., & Maini, R. (2021). Improved multi-ant-colony algorithm for solving multi-objective vehicle routing problems. Scientia Iranica, 28(6), 3412-3428.
    Hashimoto, H., Yagiura, M., & Ibaraki, T. (2008). An iterated local search algorithm for the time-dependent vehicle routing problem with time windows. Discrete Optimization, 5(2), 434-456.
    İlhan, İ. L. H. A. N. (2021). An improved simulated annealing algorithm with crossover operator for capacitated vehicle routing problem. Swarm and Evolutionary Computation, 64, 100911.
    Józefowska, J., Pawlak, G., Pesch, E., Morze, M., & Kowalski, D. (2018). Fast truck-packing of 3D boxes. Engineering Management in Production and Services, 10(2), 29-40.
    Kirkpatrick, S., Gelatt Jr, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. science, 220(4598), 671-680.
    Küçük, M., & Yildiz, S. T. (2022). Constraint programming-based solution approaches for three-dimensional loading capacitated vehicle routing problems. Computers & Industrial Engineering, 171, 108505.
    Mari, F., Mahmudy, W. F., & Santoso, P. B. (2018). An improved simulated annealing for the capacitated vehicle routing problem (CVRP). Jurnal Ilmiah Kursor, 9(3).
    Pan, B., Zhang, Z., & Lim, A. (2021). Multi-trip time-dependent vehicle routing problem with time windows. European Journal of Operational Research, 291(1), 218-231.
    Praveen, V., Keerthika, P., Sivapriya, G., Sarankumar, A., & Bhasker, B. (2022). Vehicle routing optimization problem: a study on capacitated vehicle routing problem. Materials Today: Proceedings, 64, 670-674.
    Yalcin, G. D., & Erginel, N. (2022). An Adapted Fuzzy Multi-Objective Programming Algorithm for Vehicle Routing. Universal Journal of Operations and Management, 56-74.
    Zhong, Y., & Cole, M. H. (2005). A vehicle routing problem with backhauls and time windows: a guided local search solution. Transportation Research Part E: Logistics and Transportation Review, 41(2), 131-144.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE