簡易檢索 / 詳目顯示

研究生: 洪靜宜
Hong, Ching-I
論文名稱: 回收銅鋅應用於產氫奈米反應器
Nanoreactors Containing Recycled Copper and Zinc for Hydrogen Generation
指導教授: 王鴻博
Wang, H-Paul
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 169
中文關鍵詞: 奈米反應器甲醇部分氧化反應甲醇分解反應SAXSXANESEXAFS
外文關鍵詞: Cu, ZnO, nanoreactors, partial oxidation of methanol, decomposition of methanol, SAXS, XANES, EXAFS
相關次數: 點閱:116下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氫氣是目前極具潛力的綠色能源新選擇,完全燃燒後的產物為水,釋放到環境中不造成污染。甲醇為一高能量密度之液態燃料,可利用生物質(biomass)轉化合成,甲醇具價格低廉、用途廣泛及容易運輸之優點,為最好的產氫來源之一。甲醇可藉由蒸氣重組反應(SRM)、降解反應(DM)、氧化性重組反應(OSRM)與部分氧化反應(POM)轉換成氫氣。
    本研究以發展新型奈米反應器(nanoreactor)為主,成為一種新產氫技術。以醣化合物(例如:澱粉)螯合廢水中之銅離子形成Cu2+-CD錯合物,碳化後生成可調粒徑之奈米Cu@C核殼(core-shell)物質,其奈米粒徑可調範圍為7~40 nm,利用酸萃取進一步將Cu@C內部之金屬銅析出,生成可調粒徑、可調活性奈米反應器(nanoreactor):Cu-ZnO@C與Cu-ZnO○yC,應用於催化POM與DM反應,以達到在較低溫度催化甲醇轉化生成氫氣。
    實驗結果顯示Cu在低溫(<523 K)可催化POM或DM生成氫氣;ZnO則有助於增加Cu分散性、穩定性及觸媒活性。在侷限的Cu-ZnO@C或Cu-ZnO○yC
    奈米反應中,可以大幅提升反應物與Cu-ZnO碰撞頻率,增加低溫反應速率與H2產率。
    另外,利用同步輻射光源探討奈米反應器生成與反應機制,由in situ小角度X光散射儀(SAXS)分析,發現在溫度433 K,Cu-ZnO@C 奈米顆粒初生成。XRD顯示奈米反應器中主要之物種為Cu與ZnO,TEM分析結果顯示Cu-ZnO@C奈米反應器之粒徑大小為3-20 nm,與XRD、SAXS分析結果穩合。
    在473-573 K,Cu-ZnO@C奈米反應器之銅金屬活性基可催化POM生成氫氣,由XANES及EXAFS光譜分析發現,在POM反應後,少量Cu被氧化成Cu(I)。值得注意的是,當ZnO量增加,Cu量減少,氫氣產量隨之增加;ZnO似乎具有提升POM產氫效率之能力。蛋殼(yolk-shell)奈米反應器比核殼奈米反應器在侷限空間內更能增加碰撞機率,使POM反應活化能降低,因此可降低反應溫度、提高產氫量。

    Methanol which has been considered as high density liquid fuels can be synthesized from biomass. H2 can be obtained via partial oxidation of methanol (POM) and decomposition of methanol (DM) at the temperature range of 473-673 K. To have a better energy efficiency, feasibility of the catalytic POM and DM reactions in core- and yolk-shell nanoreactors have been investigated in the present work. In separated experiments, we found that nanosized copper present in chemical-mechanical-polishing wastewater can be recovered by chelating with β-cyclodextrin (CD). Metallic copper (Cu) encapsulated in the carbon shell with the size ranged from 7 to 40 nm as the CD-Cu2+ complex was carbonized at the temperature of 573 K. In the present work, the core metals were etched from the Cu@C or Cu-ZnO@C. Experimentally, POM and DM catalyzed by the Cu-ZnO@C or Cu-ZnO○yC nanoreactors at a relatively low temperature was found. In addition, the collision frequency of CH3OH and O2 in the confined nanoreactors can be highly increased, and effectively proceed for a high yield of H2.
    Formation of the Cu-ZnO@C nanoreactors was observed by in situ small angle X-ray scattering (SAXS) during temperature-programmed carbonization at the temperature range of 323-523 K. It seems that the threshold temperature for the growth of the Cu-ZnO nanoparticles was 433 K approximately. Nanosize Cu and ZnO in the Cu-ZnO@C are observed by XRD. By TEM images, the crystalline sizes of Cu are 3-20 nm which are similar to the observations by in situ SAXS and XRD. After partially etching of Cu from Cu-ZnO@C, CuO or Cu2O is not found in the Cu-ZnO○yC nanoreactors. During the catalytic POM effected by the Cu-ZnO@C nanoreactors, a small amount of Cu has been oxidized to higher oxidation states.
    At 473-573 K, the activity of the nanoreactors is increased with an increase of the fraction of ZnO. The yolk-shell nanoreactors have a better activity for DM than the core-shell one due to the fact of increasing collision frequency in the confined nanoreactors.

    摘要 I ABSTRACT III 誌謝 V CONTENT 6 FIGURES 8 TABLES 13 CHAPTER 1 INTRODUCTION 15 CHAPTER 2 LITTERATURE STUDIES 17 2.1 Electroplating (EP) Wastewater 17 2.2 Core-shell nanoparticles 18 2.3 Yolk-shell nanoreactors 26 2.4 Fuel Cells 28 2.5 Methanol Conversion 34 2.5.1 Catalytic Decomposition of Methanol 36 2.5.2 Catalytic Steam Reforming of Methanol 40 2.5.3 Catalytic Partial Oxidation of Methanol 43 CHATER 3 EXPERIMENTAL METHODS 52 3.1 Experimental Procedures 52 3.2 Preparation of Catalysts 54 3.3 Characterization of Catalysts 55 3.4 Methanol Conversion 61 3.4.1 Partial Oxidation of Methanol 61 3.4.2 Decomposition of Methanol 61 CHAPTER 4 RESULTS AND DISCUSSION 63 4.1 Preparation of Cu-ZnO@C nanoreactors 63 4.2 Preparation of Active site controllable Cu-ZnO○yC yolk-shell nanoreactors 73 4.2a Controlled Etching of Copper from Cu@C core-shell nanoparticles 74 4.2b Controlled Etching of Copper and Zinc from Cu-ZnO@C core-shell nanoparticles 83 4.2c Chelation of copper and zinc from Electroplating Wastewater 104 4.3 Partial Oxidation of Methanol Catalyzed by Cu-ZnO@C and Cu-ZnO○yC 111 4.4 Decomposition of Methanol Catalyzed by Cu-ZnO@C and Cu-ZnO○yC 127 CHAPTER 5 CONCLUSIONS 143 REFERENCES 144 APPENDIX A 159 APPENDIX B 164

    Adhoum, N., Monser, L., Bellakhal, N., Belgaied, J.-E., 2004, Treatment of electroplating wastewater containing Cu2+, Zn2+ and Cr(VI) by electrocoagulation. Journal of Hazardous Materials 112, 207-213.
    Agrell, J., Boutonnet, M., Fierro, J.L.G., 2003a, Production of hydrogen from methanol over binary Cu/ZnO catalysts - Part II. Catalytic activity and reaction pathways. Applied Catalysis a-General 253, 213-223.
    Agrell, J., Boutonnet, M., Melian-Cabrera, I., Fierro, J.L.G., 2003c, Production of hydrogen from methanol over binary Cu/ZnO catalysts - Part I. Catalyst preparation and characterisation. Applied Catalysis a-General 253, 201-211.
    Agrell, J., Birgersson, H., Boutonnet, M., Melián-Cabrera, I., Navarro, R.M., Fierro, J.L.G., 2003, Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3. Journal of Catalysis 219, 389-403.
    Agrell, J., Hasselbo, K., Jansson, K., Järås, S.G., Boutonnet, M., 2001, Production of hydrogen by partial oxidation of methanol over Cu/ZnO catalysts prepared by microemulsion technique. Applied Catalysis A: General 211, 239-250.
    Alejo, L., Lago, R., Peña, M.A., Fierro, J.L.G., 1997a, Partial oxidation of methanol to produce hydrogen over Cu-Zn-based catalysts. Applied Catalysis A: General 162, 281-297.
    Algarra, M., Jiménez, M.V., Rodríguez-Castellón, E., Jiménez-López, A., Jiménez-Jiménez, J., 2005, Heavy metals removal from electroplating wastewater by aminopropyl-Si MCM-41. Chemosphere 59, 779-786.
    Ammon, C., Bayer, A., Held, G., Richter, B., Schmidt, T., Steinrück, H.P., 2002, Dissociation and oxidation of methanol on Cu(110). Surface Science 507-510, 845-850.
    Amphlett, J.C., Evans, M.J., Jones, R.A., Mann, R.F., Weir, R.D., 1981, HYDROGEN-PRODUCTION BY THE CATALYTIC STEAM REFORMING OF METHANOL .1. THE THERMODYNAMICS. Canadian Journal of Chemical Engineering 59, 720-727.
    Asprey, S.P., W. Wojciechowski, B., Peppley, B.A., 1999, Kinetic studies using temperature-scanning: the steam-reforming of methanol. Applied Catalysis A: General 179, 51-70.
    Boccuzzi, F., Chiorino, A., Manzoli, M., 2003, FTIR study of methanol decomposition on gold catalyst for fuel cells. Journal of Power Sources 118, 304-310.
    Borasio, M., Rodríguez de la Fuente, O., Rupprechter, G., Freund, H.-J., 2005, In Situ Studies of Methanol Decomposition and Oxidation on Pd(111) by PM-IRAS and XPS Spectroscopy. The Journal of Physical Chemistry B 109, 17791-17794.
    Boudghene Stambouli, A., Traversa, E., 2002, Fuel cells, an alternative to standard sources of energy. Renewable and Sustainable Energy Reviews 6, 295-304.
    Chang, F.W., Lai, S.C., Roselin, L.S., 2008a, Hydrogen production by partial oxidation of methanol over ZnO-promoted Au/Al2O3 catalysts. Journal of Molecular Catalysis a-Chemical 282, 129-135.
    Chang, F.W., Roselin, L.S., Ou, T.C., 2008b, Hydrogen production by partial oxidation of methanol over bimetallic Au-Ru/Fe2O3 catalysts. Applied Catalysis a-General 334, 147-155.
    Chen, F.L., Sun, I.W., Wang, H.P., Huang, C.H., 2009, Nanosize Copper Dispersed Ionic Liquids As an Electrolyte of New Dye-Sensitized Solar Cells. Journal of Nanomaterials.
    Chen, F.L., Letortu, A., Liao, C.Y., Tsai, C.K., Huang, H.L., Sun, I.W., Wei, Y.L., Paul Wang, H., 2010a, Cu@C nanoparticles dispersed RTILs used in the DSSC electrolyte. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 619, 112-114.
    Chen, P., Wu, X., Lin, J., Tan, K.L., 1999, Synthesis of Cu nanoparticles and microsized fibers by using carbon nanotubes as a template. Journal of Physical Chemistry B 103, 4559-4561.
    Chen, S.W., Sommers, J.M., 2001, Alkanethiolate-protected copper nanoparticles: Spectroscopy, electrochemistry, and solid-state morphological evolution. Journal of Physical Chemistry B 105, 8816-8820.
    Cheng, D.M., Zhou, X.D., Xia, H.B., Chan, H.S.O., 2005, Novel method for the preparation of polymeric hollow nanospheres containing silver cores with different sizes. Chemistry of Materials 17, 3578-3581.
    Cheng, W.H., 1995, REACTION AND XRD STUDIES ON CU BASED METHANOL DECOMPOSITION CATALYSTS - ROLE OF CONSTITUENTS AND DEVELOPMENT OF HIGH-ACTIVITY MULTICOMPONENT CATALYSTS. Applied Catalysis a-General 130, 13-30.
    Cheng, W.-H., 1995, Deactivation and regeneration of Cu/Cr based methanol decomposition catalysts. Applied Catalysis B: Environmental 7, 127-136.
    Chen, W.-S., Chang, F.-W., Roselin, L.S., Ou, T.-C., Lai, S.-C., 2010b, Partial oxidation of methanol over copper catalysts supported on rice husk ash. Journal of Molecular Catalysis A: Chemical 318, 36-43.
    Düsterwald, H.G., Höhlein, B., Kraut, H., Meusinger, J., Peters, R., Stimming, U., 1997, Methanol steam-reforming in a catalytic fixed bed reactor. Chemical Engineering & Technology 20, 617-623.
    Dellwig, T., Rupprechter, G., Unterhalt, H., Freund, H.J., 2000, Bridging the Pressure and Materials Gaps: High Pressure Sum Frequency Generation Study on Supported Pd Nanoparticles. Physical Review Letters 85, 776.
    Espinosa, L.A., Lago, R.M., Pena, M.A., Fierro, J.L.G., 2003, Mechanistic aspects of hydrogen production by partial oxidation of methanol over Cu/ZnO catalysts. Topics in Catalysis 22, 245-251.
    Eswaramoorthi, I., Sundaramurthy, V., Dalai, A.K., 2006, Partial oxidation of methanol for hydrogen production over carbon nanotubes supported Cu-Zn catalysts. Applied Catalysis a-General 313, 22-34.
    Farmer, S.C., Patten, T.E., 2001, Photoluminescent polymer/quantum dot composite nanoparticles. Chemistry of Materials 13, 3920-3926.
    Fisher, I.A., Bell, A.T., 1999, A Mechanistic Study of Methanol Decomposition over Cu/SiO2, ZrO2/SiO2, and Cu/ZrO2/SiO2. Journal of Catalysis 184, 357-376.
    Ghodselahi, T., Vesaghi, M.A., Shafiekhani, A., Baghizadeh, A., Lameii, M., 2008, XPS study of the Cu@Cu2O core-shell nanoparticles. Applied Surface Science 255, 2730-2734.
    Gong, J.-L., Jiang, J.-H., Liang, Y., Shen, G.-L., Yu, R.-Q., 2006, Synthesis and characterization of surface-enhanced Raman scattering tags with Ag/SiO2 core-shell nanostructures using reverse micelle technology. Journal of Colloid and Interface Science 298, 752-756.
    Greeley, J., Mavrikakis, M., 2004, Competitive paths for methanol decomposition on Pt(111). Journal of the American Chemical Society 126, 3910-3919.
    Grunwaldt, J.D., Molenbroek, A.M., Topsøe, N.Y., Topsøe, H., Clausen, B.S., 2000, In Situ Investigations of Structural Changes in Cu/ZnO Catalysts. Journal of Catalysis 194, 452-460.
    Günter, M.M., Ressler, T., Bems, B., Büscher, C., Genger, T., Hinrichsen, O., Muhler, M., Schlögl, R., 2001, Implication of the microstructure of binary Cu/ZnO catalysts for their catalytic activity in methanol synthesis. Catalysis Letters 71, 37-44.
    Guo, X., Liu, X., Xu, B., Dou, T., 2009, Synthesis and characterization of carbon sphere-silica core-shell structure and hollow silica spheres. Colloids and Surfaces A: Physicochemical and Engineering Aspects 345, 141-146.
    Hammer, B., Nørskov, J.K., 1995, Electronic factors determining the reactivity of metal surfaces. Surface Science 343, 211-220.
    Hoover, N.N., Auten, B.J., Chandler, B.D., 2006, Tuning supported catalyst reactivity with dendrimer-templated Pt-Cu nanoparticles. Journal of Physical Chemistry B 110, 8606-8612.
    Hong, C.-I., Kang, H.-Y., Wang, H.P., Lin, W.-K., Jeng, U.S., Su, C.-H., 2011, Cu-ZnO@C nanoreactors studied by in situ synchrotron SAXS spectroscopy. Journal of Electron Spectroscopy and Related Phenomena 184, 301-303.
    Hsiao, T.C., Lin, S.D., 2007, Effect of co-feed species on methanol conversion over Cu/ZnO/Al2O3 and its possible mechanism. Journal of Molecular Catalysis A: Chemical 277, 137-144.
    Huang, C.H., Wang, H.P., Chang, J.E., Eyring, E.M., 2009a, Synthesis of nanosize-controllable copper and its alloys in carbon shells. Chemical Communications, 4663-4665.
    Huang, H.L., Wang, H.P., 2005, Speciation of nano-copper collected in molecular sieves from chemical-mechanical planarization wastewater. Journal of Electron Spectroscopy and Related Phenomena 144, 307-309.
    Huang, T.J., Chren, S.L., 1988b, Kinetics of partial oxidation of methanol over a copper-zinc catalyst. Applied Catalysis 40, 43-52.
    Huang, T.J., Wang, S.W., 1986a, HYDROGEN-PRODUCTION VIA PARTIAL OXIDATION OF METHANOL OVER COPPER-ZINC CATALYSTS. Applied Catalysis 24, 287-297.
    Huang, T.j., Wang, S.W., 1986b, Hydrogen production via partial oxidation of methanol over copper-zinc catalysts. Applied Catalysis 24, 287-297.
    Huang, X., Guo, C., Zuo, J., Zheng, N., Stucky, G.D., 2009b, An Assembly Route to Inorganic Catalytic Nanoreactors Containing Sub-10-nm Gold Nanoparticles with Anti-Aggregation Properties. Small 5, 361-365.
    Ikeda, S., Ishino, S., Harada, T., Okamoto, N., Sakata, T., Mori, H., Kuwabata, S., Torimoto, T., Matsumura, M., 2006, Ligand-Free Platinum Nanoparticles Encapsulated in a Hollow Porous Carbon Shell as a Highly Active Heterogeneous Hydrogenation Catalyst. Angewandte Chemie International Edition 45, 7063-7066.
    Iwasa, N., Masuda, S., Ogawa, N., Takezawa, N., 1995, Steam reforming of methanol over Pd/ZnO: Effect of the formation of PdZn alloys upon the reaction. Applied Catalysis A: General 125, 145-157.
    Jansen, W.P.A., Beckers, J., v. d. Heuvel, J.C., Denier v. d. Gon, A.W., Bliek, A., Brongersma, H.H., 2002, Dynamic Behavior of the Surface Structure of Cu/ZnO/SiO2 Catalysts. Journal of Catalysis 210, 229-236.
    Joensen, F., Rostrup-Nielsen, J.R., 2002, Conversion of hydrocarbons and alcohols for fuel cells. Journal of Power Sources 105, 195-201.
    Jones, S.D., Neal, L.M., Hagelin-Weaver, H.E., 2008, Steam reforming of methanol using Cu-ZnO catalysts supported on nanoparticle alumina. Applied Catalysis B: Environmental 84, 631-642.
    Kafouris, D., Patrickios, C.S., 2009, Synthesis and characterization of shell-cross-linked polymer networks and large-core star polymers: Effect of the volume of the cross-linking mixture. European Polymer Journal 45, 10-18.
    Kamata, K., Lu, Y., Xia, Y.N., 2003, Synthesis and characterization of monodispersed core-shell spherical colloids with movable cores. Journal of the American Chemical Society 125, 2384-2385.
    Khan, W.S., Cao, C., Nabi, G., Yao, R., Bhatti, S.H., 2010, Catalyst-free combined synthesis of Zn/ZnO core/shell hollow microspheres and metallic Zn microparticles by thermal evaporation and condensation route. Journal of Alloys and Compounds 506, 666-672.
    Kim, Y.H., Lee, D.K., Cha, H.G., Kim, C.W., Kang, Y.C., Kang, Y.S., 2006, Preparation and characterization of the antibacterial Cu nanoparticle formed on the surface of SiO2 nanoparticles. Journal of Physical Chemistry B 110, 24923-24928.
    Kiss, J., Witt, A., Meyer, B., Marx, D., 2009, Methanol synthesis on ZnO(0001). I. Hydrogen coverage, charge state of oxygen vacancies, and chemical reactivity. Journal of Chemical Physics 130.
    Kudo, S., Maki, T., Miura, K., Mae, K., 2010, High porous carbon with Cu/ZnO nanoparticles made by the pyrolysis of carbon material as a catalyst for steam reforming of methanol and dimethyl ether. Carbon 48, 1186-1195.
    Lee, J., Lee, C., Lee, K., Lee, Y., 2008, TOF-SIMS study of red sealing-inks on paper and its forensic applications. Applied Surface Science 255, 1523-1526.
    Lee, J., Park, J.C., Song, H., 2008, A nanoreactor framework of a Au@SiO2 yolk/shell structure for catalytic reduction of p-nitrophenol. Advanced Materials 20, 1523-1528.
    Lee, J.K., Ko, J.B., Kim, D.H., 2004, Methanol steam reforming over Cu/ZnO/Al2O3 catalyst: kinetics and effectiveness factor. Applied Catalysis a-General 278, 25-35.
    Li, H., Kang, W., Xi, B., Yan, Y., Bi, H., Zhu, Y., Qian, Y., 2010a, Thermal synthesis of Cu@carbon spherical core-shell structures from carbonaceous matrices containing embedded copper particles. Carbon 48, 464-469.
    Li, H.B., Kang, W.J., Xi, B.J., Yan, Y., Bi, H.Y., Zhu, Y.C., Qian, Y.T., 2010b, Thermal synthesis of Cu@carbon spherical core-shell structures from carbonaceous matrices containing embedded copper particles. Carbon 48, 464-469.
    Li, P., Zhang, W.P., Han, X.W., Bao, X.H., 2010, Conversion of Methanol to Hydrocarbons over Phosphorus-modified ZSM-5/ZSM-11 Intergrowth Zeolites. Catalysis Letters 134, 124-130.
    Lin, C.M., Hung, T.L., Huang, Y.H., Wu, K.T., Tang, M.T., Lee, C.H., Chen, C.T., Chen, Y.Y., 2007a, Size-dependent lattice structure of palladium studied by x-ray absorption spectroscopy. Physical Review B 75.
    Lin, S.D., Hsiao, T.C., Chen, L.C., 2009, The steady state methanol decomposition reaction over Cu/Zn and Cu/Cr catalysts: Pretreatment, operando EXAFS, and activity study. Applied Catalysis a-General 360, 226-231.
    Lin, Y.-C., Hohn, K.L., Stagg-Williams, S.M., 2007b, Hydrogen generation from methanol oxidation on supported Cu and Pt catalysts: Effects of active phases and supports. Applied Catalysis A: General 327, 164-172.
    Lindner, B., Sjöström, K., 1984, Operation of an internal combustion engine: Lean conditions with hydrogen produced in an onboard methanol reforming unit. Fuel 63, 1485-1490.
    Lindström, B., Pettersson, L.J., 2003, Development of a methanol fuelled reformer for fuel cell applications. Journal of Power Sources 118, 71-78.
    Lyon, J.L., Fleming, D.A., Stone, M.B., Schiffer, P., Williams, M.E., 2004, Synthesis of Fe oxide core/Au shell nanoparticles by iterative hydroxylamine seeding. Nano Letters 4, 719-723.
    Marinakos, S.M., Novak, J.P., Brousseau, L.C., House, A.B., Edeki, E.M., Feldhaus, J.C., Feldheim, D.L., 1999, Gold particles as templates for the synthesis of hollow polymer capsules. Control of capsule dimensions and guest encapsulation. Journal of the American Chemical Society 121, 8518-8522.
    Marini, M., Toselli, M., Borsacchi, S., Mollica, G., Geppi, M., Pilati, F., 2008, Facile synthesis of core-shell organic-inorganic hybrid nanoparticles with Amphiphilic polymer shell by one-step sol-gel reactions. Journal of Polymer Science Part a-Polymer Chemistry 46, 1699-1709.
    Matsumura, Y., Ishibe, H., 2009, High temperature steam reforming of methanol over Cu/ZnO/ZrO2 catalysts. Applied Catalysis B-Environmental 91, 524-532.
    Matter, P.H., Ozkan, U.S., 2005, Effect of pretreatment conditions on Cu/Zn/Zr-based catalysts for the steam reforming of methanol to H2. Journal of Catalysis 234, 463-475.
    Mei, D.H., Xu, L.J., Henkelman, G., 2009, Potential Energy Surface of Methanol Decomposition on Cu(110). Journal of Physical Chemistry C 113, 4522-4537.
    Mott, D., Galkowski, J., Wang, L.Y., Luo, J., Zhong, C.J., 2007, Synthesis of size-controlled and shaped copper nanoparticles. Langmuir 23, 5740-5745.
    Muhler, M., Törnqvist, E., Nielsen, L.P., Clausen, B.S., Topsøe, H., 1994, On the role of adsorbed atomic oxygen and CO2 in copper based methanol synthesis catalysts Catalysis Letters 25, 1-10.
    Nam, J.M., Park, S.J., Mirkin, C.A., 2002, Bio-barcodes based on oligonucleotide-modified nanoparticles. Journal of the American Chemical Society 124, 3820-3821.
    Narayanan, T.N., Shaijumon, M.M., Ajayan, P.M., Anantharaman, M.R., 2010, Synthesis of High Coercivity Core-Shell Nanorods Based on Nickel and Cobalt and Their Magnetic Properties. Nanoscale Research Letters 5, 164-168.
    Niu, Y.H., Crooks, R.M., 2003, Preparation of dendrimer-encapsulated metal nanoparticles using organic solvents. Chemistry of Materials 15, 3463-3467.
    Nowicka, A.M., Kowalczyk, A., Donten, M., Krysinski, P., Stojek, Z., 2009, Influence of a Magnetic Nanoparticle As a Drug. Analytical Chemistry 81, 7474-7483.
    Palo, D.R., Dagle, R.A., Holladay, J.D., 2007, Methanol steam reforming for hydrogen production. Chemical Reviews 107, 3992-4021.
    Palo, D.R.H., Jamie D. ; Dagle, Robert A. ; Chin, Ya-Huei 2005, Integrated Methanol Fuel Processors for Portable Fuel Cell Systems. Microreactor Technology and Process Intensification, 5, 209-223.
    Park, J.C., Bang, J.U., Lee, J., Ko, C.H., Song, H., 2010, Ni@SiO2 yolk-shell nanoreactor catalysts: High temperature stability and recyclability. Journal of Materials Chemistry 20, 1239-1246.
    Park, S., Vohs, J.M., Gorte, R.J., 2000, Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 404, 265-267.
    Patil, Y.B., Swaminathan, S.K., Sadhukha, T., Ma, L.A., Panyam, J., 2010, The use of nanoparticle-mediated targeted gene silencing and drug delivery to overcome tumor drug resistance. Biomaterials 31, 358-365.
    Peppley, B.A., Amphlett, J.C., Kearns, L.M., Mann, R.F., 1999, Methanol-steam reforming on Cu/ZnO/Al2O3 catalysts. Part 2. A comprehensive kinetic model. Applied Catalysis A: General 179, 31-49.
    Rabe, S., Vogel, F., 2008, A thermogravimetric study of the partial oxidation of methanol for hydrogen production over a Cu/ZnO/Al2O3 catalyst. Applied Catalysis B: Environmental 84, 827-834.
    Ranganathan, E.S., Bej, S.K., Thompson, L.T., 2005, Methanol steam reforming over Pd/ZnO and Pd/CeO2 catalysts. Applied Catalysis A: General 289, 153-162.
    Revilla, I., Gonzalez-SanJose, M.L., 1998, Methanol release during fermentation of red grapes treated with pectolytic enzymes. Food Chemistry 63, 307-312.
    Sakong, S., Groß, A., 2005, Density functional theory study of the partial oxidation of methanol on copper surfaces. Journal of Catalysis 231, 420-429.
    Salzemann, C., Lisiecki, I., Brioude, A., Urban, J., Pileni, M.P., 2004, Collections of copper nanocrystals characterized by different sizes and shapes: Optical response of these nanoobjects. Journal of Physical Chemistry B 108, 13242-13248.
    Santacesaria, E., Carrá, S., 1983, Kinetics of catalytic steam reforming of methanol in a cstr reactor. Applied Catalysis 5, 345-358.
    Sedlak, D.L., Chan, P.G., 1997, Reduction of hexavalent chromium by ferrous iron. Geochimica et Cosmochimica Acta 61, 2185-2192.
    Sharma, Y.C., Prasad, G., Rupainwar, D.C., 1992, Heavy metal pollution of river Ganga in Mirzapur, India. International Journal of Environmental Studies 40, 41 - 53.
    Shen, G.C., Fujita, S., Matsumoto, S., Takezawa, N., 1997, Steam reforming of methanol on binary Cu/ZnO catalysts: Effects of preparation condition upon precursors, surface structure and catalytic activity. Journal of Molecular Catalysis a-Chemical 124, 123-136.
    Shen, H.X., Xu, M.M., Yan, X., Yao, J.L., Han, S.Y., Gu, R.A., 2010, Synthesis and surface enhanced optical properties of multibranched spindle particles and core-shell structures. Colloids and Surfaces A: Physicochemical and Engineering Aspects 353, 204-209.
    Shishido, T., Yamamoto, Y., Morioka, H., Takaki, K., Takehira, K., 2004, Active Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation method in steam reforming of methanol. Applied Catalysis a-General 263, 249-253.
    Shishido, T., Yamamoto, Y., Morioka, H., Takehira, K., 2007, Production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation: Steam reforming and oxidative steam reforming. Journal of Molecular Catalysis a-Chemical 268, 185-194.
    Som, T., Karmakar, B., 2009, Core-Shell Au-Ag Nanoparticles in Dielectric Nanocomposites with Plasmon-Enhanced Fluorescence: A New Paradigm in Antimony Glasses. Nano Research 2, 607-616.
    Sopeña, D., Melgar, A., Briceño, Y., Navarro, R.M., Álvarez-Galván, M.C., Rosa, F., Diesel fuel processor for hydrogen production for 5 kW fuel cell application. International Journal of Hydrogen Energy 32, 1429-1436.
    Stern, E.A., Newville, M., Ravel, B., Yacoby, Y., Haskel, D., 1995, The UWXAFS analysis package: philosophy and details. Physica B: Condensed Matter 208-209, 117-120.
    Su, C.I., Peng, C.C., Lu, Y.C., 2009, Silver-supporting Modification of Viscose Rayon-Based Activated Carbon Fabrics. Textile Research Journal 79, 1486-1501.
    Topsøe, N.-Y., Topsøe, H., 1999, On the nature of surface structural changes in Cu/ZnO methanol synthesis catalysts. Topics in Catalysis 8, 267-270.
    Torchynska, T.V., 2009, Interface states and bio-conjugation of CdSe/ZnS core-shell quantum dots. Nanotechnology 20.
    Tsoncheva, T., Vankova, S., Bozhkov, O., Mehandjiev, D., 2005, Effect of rhenium on copper supported on activated carbon catalysts for methanol decomposition. Journal of Molecular Catalysis A: Chemical 225, 245-251.
    Turco, M., Bagnasco, G., Costantino, U., Marmottini, F., Montanari, T., Ramis, G., Busca, G., 2004, Production of hydrogen from oxidative steam reforming of methanol: II. Catalytic activity and reaction mechanism on Cu/ZnO/Al2O3 hydrotalcite-derived catalysts. Journal of Catalysis 228, 56-65.
    Twigg, M.V., Spencer, M.S., 2003, Deactivation of Copper Metal Catalysts for Methanol Decomposition, Methanol Steam Reforming and Methanol Synthesis. Topics in Catalysis 22, 191-203.
    Usami, Y., Kagawa, K., Kawazoe, M., Yasuyuki, M., Sakurai, H., Haruta, M., 1998, Catalytic methanol decomposition at low temperatures over palladium supported on metal oxides. Applied Catalysis A: General 171, 123-130.
    Velu, S., Suzuki, K., Okazaki, M., Kapoor, M.P., Osaki, T., Ohashi, F., 2000, Oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts for the selective production of hydrogen for fuel cells: Catalyst characterization and performance evaluation. Journal of Catalysis 194, 373-384.
    Wang, X.B., Song, C., Geng, K.W., Zeng, F., Pan, F., 2007, Photoluminescence and Raman scattering of Cu-doped ZnO films prepared by magnetron sputtering. Applied Surface Science 253, 6905-6909.
    Wang, Z., Xi, J., Wang, W., Lu, G., 2003a, Selective production of hydrogen by partial oxidation of methanol over Cu/Cr catalysts. Journal of Molecular Catalysis A: Chemical 191, 123-134.
    Wang, Z.F., Wang, W.P., Lu, G.X., 2003b, Studies on the active species and on dispersion of Cu in CU/SiO2 and Cu/Zn/SiO2 for hydrogen production via methanol partial oxidation. International Journal of Hydrogen Energy 28, 151-158.
    Waugh, K.C., 1992, Methanol Synthesis. Catalysis Today 15, 51-75.
    Wilson, M.S., 2009, Methanol decomposition fuel processor for portable power applications. International Journal of Hydrogen Energy 34, 2955-2964.
    Wu, X.J., Xu, D.S., 2010, Soft Template Synthesis of Yolk/Silica Shell particles. Advanced Materials 22, 1516-1520.
    Xia, Y.Y., Xu, L., 2010, Fabrication and catalytic property of an Ag@poly(3,4-ethylenedioxythiophene) yolk/shell structure. Synthetic Metals 160, 545-548.
    Xu, J., Li, X.L., Liu, J.F., Wang, X., Peng, Q., Li, Y.D., 2005, Solution route to inorganic nanobelt-conducting organic polymer core-shell nanocomposites. Journal of Polymer Science Part a-Polymer Chemistry 43, 2892-2900.
    Yamada, M., 2009, Synthesis of Organic Shell-Inorganic Core Hybrid Nanoparticles by Wet Process and Investigation of Their Advanced Functions. Bulletin of the Chemical Society of Japan 82, 152-170.
    Yamamoto, O., Nakakoshi, K., Sasamoto, T., Nakagawa, H., Miura, K., 2001, Adsorption and growth inhibition of bacteria on carbon materials containing zinc oxide. Carbon 39, 1643-1651.
    Yang, H.-C., Chang, F.-W., Roselin, L.S., 2007, Hydrogen production by partial oxidation of methanol over Au/CuO/ZnO catalysts. Journal of Molecular Catalysis A: Chemical 276, 184-190.
    Yin, Y.D., Rioux, R.M., Erdonmez, C.K., Hughes, S., Somorjai, G.A., Alivisatos, A.P., 2004, Formation of hollow nanocrystals through the nanoscale Kirkendall Effect. Science 304, 711-714.
    Yoshihara, J., Campbell, C.T., 1996, Methanol Synthesis and Reverse Water-Gas Shift Kinetics over Cu(110) Model Catalysts: Structural Sensitivity. Journal of Catalysis 161, 776-782.
    Yudanov, I.V., Matveev, A.V., Neyman, K.M., Rösch, N., 2008, How the C−O Bond Breaks during Methanol Decomposition on Nanocrystallites of Palladium Catalysts. Journal of the American Chemical Society 130, 9342-9352.
    Zeng, H.B., Liu, P.S., Cai, W.P., Cao, X.L., Yang, S.K., 2007, Aging-induced self-assembly of Zn/ZnO treelike nanostructures from nanoparticles and enhanced visible emission. Crystal Growth & Design 7, 1092-1097.
    Zhong, C.J., Maye, M.M., 2001, Core-shell assembled nanoparticles as catalysts. Advanced Materials 13, 1507-1511.
    Zhou, G.J., Lu, M.K., Yang, Z.S., 2006, Aqueous synthesis of copper nanocubes and bimetallic copper/palladium core-shell nanostructures. Langmuir 22, 5900-5903.
    Zoy, A., Nassiopoulou, A.G., 2008, Growth and electrical characterization of thin conductive Au nanoparticle chains on oxidized Si substrates between electrodes for sensor applications. Physica Status Solidi a-Applications and Materials Science 205, 2621-2624.

    無法下載圖示 校內:2016-06-23公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE