簡易檢索 / 詳目顯示

研究生: 林潔
Lin, Chieh
論文名稱: 以氧化鋅基緩衝層改善氧化銦鎵鋅薄膜電晶體之源/汲極接面阻抗及其電性之研究
Improving Source/Drain Contact Resistance and Electronic Properties of InGaZnO Thin-Film Transistors Using a ZnO-based Buffer Layer
指導教授: 王水進
Wang, Shui-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 95
中文關鍵詞: 氧化銦鎵鋅氧化鋅氧化鋁鋅薄膜電晶體接觸阻抗電漿製程氧空缺
外文關鍵詞: InGaZnO, ZnO, Al-doped ZnO, Thin film transistor, Contact resistance
相關次數: 點閱:80下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討源/汲極與氧化銦鎵鋅通道層之金屬-半導體歐姆接觸特性於氧化銦鎵鋅薄膜電晶體特性之影響,分別提出兩種方法改善源/汲極與氧化銦鎵鋅通道層之金屬-半導體歐姆接觸特性。
    第一種方法為使用氬電漿製程提升氧化銦鎵鋅薄膜電晶體之源/汲極下方接面之載子濃度,期望藉由此高濃度接面達到提升元件特性之目標,實驗結果發現,使用氬電漿製程處理時間為60秒時,可得最佳的元件特性。其開啟電流與載子遷移率分別提升至2.27×10-5 A與4.93 cm2/Vs,臨界電壓與次臨界擺幅分別降至0.28 V與0.13 V/dec。
    第二種方法為使用調變濺鍍系統之腔體製程壓力,可於一定範圍內調整氧化鋅基薄膜之載子濃度,並成功的將此薄膜作為源/汲極與氧化銦鎵鋅通道層之接面緩衝層,使此金半接面間具一高載子濃度之緩衝層,藉此緩衝層改善源/汲極之金半接觸阻抗,提升元件特性。傳統型氧化銦鎵鋅薄膜電晶體之開啟電流為6.93×10-6 A、臨界電壓為0.71 V、次臨界擺幅為0.18 V/dec及載子遷移率為1.86 cm2/Vs,而本研究所提出之具氧化鋅緩衝層的氧化銦鎵鋅薄膜電晶體,其各項電晶體特性皆有顯著提升,其中開啟電流及載子遷移率分別提升至6.42×10-5 A與15.22 cm2/Vs,臨界電壓降至0.19 V而次臨界擺幅則改善至0.13 V/dec。
    本論文成功於室溫環境下,利用氬電漿處理製程與高載子濃度之氧化鋅薄膜提升氧化銦鎵鋅薄膜電晶體之特性,於開啟電流、次臨限擺幅與電流開關比皆有明顯改善。此高載子濃度緩衝層之製備,具有簡單、大面積、快速及低溫製程之優點,除了可應用於玻璃基板及軟性基板上,亦可使用於大尺寸之面板,於未來顯示技術(AMLCD或AMOLED)與軟性電子產品的應用深具研究與發展潛力。

    To improve source/drain (S/D) contact resistance (RDS) and electronic properties of amorphous indium gallium zinc oxide thin-film transistors (α-IGZO TFTs), this study used Ar plasma treatment to increase oxygen vacancies of thin films and then decreasing contact resistance. Another way to decrease contact resistance is inserting sputtering-deposited n+-layers The carrier concentration, mobility, and resistivity can be modulated by RF sputtering under different deposition pressure. As the deposition pressure is increased, the carrier concentration and the hall mobility decreases and thus the electrical resistivity increases. Experimental results reveal that the α-IGZO TFT with ZnO buffer layer exhibited a best performance with a field-effect mobility of 15.22 cm2/Vs, a subthreshold swing of 0.13 V/ decade, a turn-on current of 6.42×10-5 A, and an on-off ratio (Ion/Ioff) of 6.75×105. Such improvements could be attributed the current transport in such a metal–semiconductor Ohmic contact has transferred from thermionic emission to thermal field emission or field emission after n+-layers insertion and/or Ar plasma treatment, which drastically suppressed the contact resistance decreased.

    中文摘要 I 英文摘要 III 誌 謝 VII 目 錄 VIII 表目錄 XIII 圖目錄 XIV 第一章 緒論1 1-1 TFT-LCD顯示器發展過程1 1-2 非晶型氧化物半導體特性3 1-3 高介電係數材料技術與選擇8 1-4 金屬閘極的發展與材料的選擇10 1-5 研究動機15 第二章 理論基礎17 2-1 等效氧化層厚度及介電常數之計算17 2-2 薄膜電晶體結構20 2-3 薄膜電晶體操作原理20 2-4 薄膜電晶體基本參數23 2-5 歐姆接觸理論27 2-6 接觸電阻量測原理29 第三章 實驗儀器設備介紹31 3-1 製程設備介紹31 3-1-1 射頻磁控濺鍍機31 3-1-2 電子束蒸鍍機34 3-2 材料分析儀器36 3-2-1 掃描式電子顯微鏡36 3-2-2 X光繞射儀(X-ray diffractometer, XRD)37 3-2-3 X光光電子能譜分析儀(X-ray photoelectron spectroscopy,XPS)38 3-3 元件電性量測使用儀器39 第四章 實驗流程41 4-1金屬-絕緣層-金屬電容製作流程42 4-2氧化鋅基薄膜之載子濃度調變實驗44 4-3將不同沉積條件之氧化鋅基薄膜應用於源汲極緩衝層並以TLM模型量測特徵接觸阻抗48 4-4氧化銦鎵鋅薄膜電晶體製作流程50 第五章 元件特性分析54 5-1 介電層氧化矽鉿(HfSiO)薄膜材料特性54 5-1-1 XRD薄膜分析54 5-1-2 XPS薄膜分析55 5-2 n+-Si/HfSiO/Ti 電容特性56 5-2-1 電容-電壓曲線(C-V Curve)56 5-2-2 漏電分析(J-V Curve)57 5-3應用氬電漿處理製程於氧化銦鎵鋅薄膜電晶體之電性量測與分析58 5-3-1 應用氬電漿處理製程於氧化銦鎵鋅薄膜電晶體之IDS-VDS特性曲線58 5-3-2 應用氬電漿處理製程於氧化銦鎵鋅薄膜電晶體之IDS-VGS特性曲線60 5-3-3 源/汲極接觸阻抗(RDS)之萃取方法62 5-3-4 應用氬電漿處理製程於氧化銦鎵鋅薄膜電晶體之RDS萃取64 5-3-5 應用氬電漿處理製程於氧化銦鎵鋅薄膜電晶體之C-V特性曲線66 5-4 氧化鋅基薄膜之材料特性調變67 5-4-1 氧化鋅薄膜之材料特性調變67 5-4-2 氧化鋁鋅薄膜之材料特性調變70 5-5 氧化鋅基緩衝層之TLM量測結果72 5-6具氧化鋅基緩衝層的氧化銦鎵鋅薄膜電晶體之電性量測與分析75 5-6-1 具氧化鋅緩衝層的氧化銦鎵鋅薄膜電晶體之IDS-VDS特性曲線75 5-6-2 具氧化鋅緩衝層的氧化銦鎵鋅薄膜電晶體之IDS-VGS特性曲線77 5-6-3 具氧化鋅緩衝層的氧化銦鎵鋅薄膜電晶體之RDS萃取79 5-6-4 具氧化鋅緩衝層的氧化銦鎵鋅薄膜電晶體之C-V特性曲線82 5-6-5 具氧化鋁鋅緩衝層的氧化銦鎵鋅薄膜電晶體之IDS-VDS特性曲線83 5-6-6 具氧化鋁鋅緩衝層的氧化銦鎵鋅薄膜電晶體之IDS-VGS特性曲線84 5-6-7 具氧化鋁鋅緩衝層的氧化銦鎵鋅薄膜電晶體之RDS萃取86 5-6-8 具氧化鋁鋅緩衝層的氧化銦鎵鋅薄膜電晶體之C-V特性曲線87 第六章 結論與未來研究88 6-1 結論88 6-2 未來研究之建議91 參考文獻92

    [1]T. P. Brody, J. A. Asars, and G. D. Dixon, “A 6 × 6 inch 20 lines-per-inch liquid-crystal display panel,” IEEE Trans. on Electron Devices, Vol. 20, pp. 995-1001, 1973.
    [2]H. Kimura, T. Maeda, T. Tsunashima, T. Morita, H. Murata, S. Hirota, and H. Sato, “A 2.15 inch QCIF reflective color TFT-LCD with digital memory on glass (DMOG),” Proceedings of the SID, pp. 268-270, 2001.
    [3]http://www.pida.org.tw/optolink/
    [4]S. B. Ogale, “Thin films and heterostructures for oxide for oxide electronics,” New York, NY: Springer, 2005.
    [5]C. Jagadish and S. Pearton, “Zinc oxide bulk, thin films and nanostructure,” UK: Elsevier, 2006.
    [6]U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, "A comprehensive review of ZnO materials and devices," J. Appl. Phys., Vol. 98, pp. 041301-1–041301-103, 2005.
    [7]A. Janotti and C. G. Van de Walle, “Fundamentals of zinc oxide as a semiconductor,” Rep. Prog. Phys., Vol. 72, pp.126501-1–126501-29, 2009.
    [8]Pearson’s Handbook of Crystallographic Data, pp. 2795-2796, 1985.
    [9]D. J. Leary, J. O. Barnes, and A. G. Jordan, “Calculation of Carrier Concentration in Polycrystalline Films as a Function of Surface Acceptor State Density: Application for ZnO Gas Sensors,” J. Electrochem. Soc, Vol. 129, pp. 1382-1387, 1982.
    [10]G. Neumann, “On the Defect Structure of Zinc-Doped Zinc Oxide,” Phys. Status Solids(b), Vol. 105, pp. 605-612, 1981.
    [11]H. Hosono, “Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application,” J. Non-Cryst. Solids, Vol. 352, pp. 851-858, 2006.
    [12]T. Kamiya, K. Nomura, and H. Hosono, “Origins of high mobility and low operation voltage of amorphous oxide TFTs: Electronic structure, electron transport, defects and doping,” J. Disp. Technol., Vol. 5, pp. 273-288, 2009.
    [13]K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano and H. Hosono, “Amorphous oxide semiconductors for high-performance flexible thin-film transistors,” Jpn. J. Appl. Phys., Vol. 45, pp. 4303-4308, 2006.
    [14]Tze-Ching, Chiao-Shun Chuang, Kenji Nomura, Han-Ping David Shieh, Hideo Hosono, and Jerzy Kanicki, “Photofield-Effect in Amorphous In-Ga-Zn-O (a-IGZO) Thin-Film Transistors,” Journal of Information Display, Vol. 9, pp. 21-29, 2008.
    [15]Minkyu Kim, Jong Han Jeong, Hun Jung Lee, Tae Kyung Ahn, Hyun Soo Shin, Jin-Seong Park, Jae Kyeong Jeong, Yeon-Gon Mo, and Hye Dong Kim, “High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper,” App. Phy. Lett., Vol. 90, pp. 212114-1–212114-3, 2007.
    [16]Chiao-Shun Chuang, Tze-Ching Fung, Barry G. Mullins, Kenji Nomura, Toshio Kamiya, Han-Ping David Shieh, Hideo Hosono, and Jerzy Kanicki, “Photosensitivity of Amorphous IGZO TFTs for Active-Matrix Flat-Panel Displays,” SID 08 DIGEST, pp. 1215-1218, 2008.
    [17]N. C. Su, S. J. Wang, and Albert Chin, “High-Performance InGaZnO Thin-Film Transistors Using HfLaO Gate Dielectric,” IEEE Electron Device Letters, Vol. 30, pp. 1317-1319, 2009.
    [18]Keun Woo Lee, Kon Yi Heo, Sang Hoon Oh, Abderrafia Moujoud, Gun Hee Kim, and Hyun Jae Kim, “Thin film transistors by solution-based indium gallium zinc oxide/carbon nanotubes blend,” Thin Solid Films, Vol. 517, pp. 4011-4014, 2009.
    [19]John Robertson, “High dielectric constant gate oxides for metal oxide Si transistors,” Institute of Physics, Vol. 69, pp. 327-396, 2006.
    [20]B. Cheng, M. C. Cao, R. Rao, A. Inani, P. V. Voorde, W. M. Greene, J. M. Stork, M. Zeitzoff, and J. C. Woo, “The impact of high-κ gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs,” IEEE Trans. Electron Devices, Vol. 46, pp. 1537-1544, 1999.
    [21]V. Mikhelashvili, and G. Eisenstein, “Effects of annealing conditions on optical and electrical characteristics of titanium dioxide films deposited by electron beam evaporation,” Appl. Phys. Lett., Vol. 89, pp. 3256-3269, 2001.
    [22]M. H. Cho, Y. S. Roh, C. N. Whang, K. Jeong, S. W. Nahm, D. H. Ko, J. H. Lee, N. I. Lee, and K. Fujihara, “Thermal stability and structural characteristics of HfO2 films on Si (100) grown by atomic-layer deposition,” Appl. Phys. Lett., Vol. 81, pp. 472-474, 2002.
    [23]S. M. Hu, “Stress-related problems in silicon technology,” Appl. Phys. Lett., Vol. 706, pp. 53-80, 1991.
    [24]T. M. Klein, D. Niu, W. S. Epling, W. Li, D. M. Maher, C. C. Hobbs, R. I. Hegde, I. J. R. Baumvol, and G. N. Parsons, “Evidence of aluminum silicate formation during chemical vapor deposition on amorphous Al2O3 thin films on Si (100),” Appl. Phys. Lett., Vol. 75, pp. 4001- 4003, 1999.
    [25]H. F. Luan, S. J. Lee, S. C. Song, Y. L. Mao, Y. Senzaki, D. Roverts, and D. L. Kwong, “Effect of Interface Oxide Layer on HfO2 Gate Dielectrics,” IEDM Tech. Dig., Vol. 34, pp. 141-142, 1999.
    [26]K. J. Hubbard, and D. G. Schlom, “Thermodynamic stability of binary oxides in contact with silicon,” J. Mater. Res., Vol. 11, pp. 2757-2776, 1996.
    [27]Li-ping Feng, Zheng-tang Liu, Ya-Ming Shen, “Compostiional, structural and electronic characteristics of HfO2 and HfSiO dielectrics prepared by radio frequency magnetron sputtering,” Vaccum, Vol. 83, pp. 902-905, 2009.
    [28]王志誠,“碳化鉿金屬閘極搭配高介電係數二氧化鉿電容與場效應電晶體之研製”,國立成功大學微電子工程研究所碩士論文,2008。
    [29]Y. C. Yeo, “Metal gate technology for nanoscaletransistors-materials election and process integration issues,” Thin Solid Films, Vol. 34, pp. 462-463, 2004.
    [30]F. Boeuf, H. S. P. Wong, J. A. Hutchby, T. Skotnicki, and T. J. King, “The end of CMOS Scaling,” IEEE circuits & devices magazine, Vol. 5, pp. 16-26, 2005.
    [31]K. A. Ellis, and R. A. Buhrman, “Boron diffusion in silicon oxides and oxynitrides,” J. Electrochem. Soc., Vol. 145, pp. 2068-2069, 1998.
    [32]Ortiz-Conde, A., Sánchez, F. G., Liou, J. J., Cerdeira, A., Estrada, M., and Yue, Y., “A review of recent MOSFET threshold voltage extraction methods.” Microelectronics Reliability, pp. 583-596, 2002
    [33]Raymond T. Tung, "Chemical Bonding and Fermi Level Pinning at Metal-Semiconductor Interfaces," Phys. Rev. Lett., Vol. 84, pp. 6078-6081, 2000.
    [34]Leonard J. Brillson and Yicheng Lu, “ZnO Schottky barriers and Ohmic contacts,” J. Appl. Phys., Vol. 109, pp. 121301-1–121301-33, 2011.
    [35]G. K. Reeves AND H. B. Harrison, “Obtaining the Specific Contact Resistance from Transmission Line Model Measurements,” IEEE Electron Device Letters, Vol. EDL-3, No.5, pp. 111-113, 1982.
    [36]http://www.ncku.edu.tw/facility/facility/devices/index_devices.htm
    [37]Chenming Calvin Hu, “Modern semiconductor devices for integrated circuits,” 2011.

    下載圖示 校內:2020-08-20公開
    校外:2020-08-20公開
    QR CODE