簡易檢索 / 詳目顯示

研究生: 胡富捷
Hu, Fu-Chieh
論文名稱: 釘槍內氣體動力行為對其性能影響之研究
Investigation on the Effects of Gasdynamics on the Performance of Pneumatic and Combustion Nailers
指導教授: 溫志湧
Wen, Chih-Yung
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 127
中文關鍵詞: 性能評估程式釘槍衝擊動能GUI氣體動力學
外文關鍵詞: GUI, gasdynamics, nailer, maximum kinetic energy of the driver, performance estimating program
相關次數: 點閱:128下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 釘槍為一般DIY常見之工具,依動力源不同可分為電動、氣動、瓦斯與火藥釘槍等四種,其規格與用途雖有所不同,但其運作原理皆是運用動力源驅使機構運動以達到作功的目的。氣動、瓦斯釘槍在性能與成本上相較其他電動及傳統工具擁有更好之優勢,因此為業界之主力產品。然而目前業界尚無一套性能檢測及衡量的標準,僅以衝擊力大小、耗氣量等經驗作為評價釘槍好壞之依據。本研究成功地建立一套經濟簡易之釘槍性能量測平台,透過壓電式壓力感測器分別埋設於氣動與瓦斯釘槍的各氣室內,量測釘槍作動過程中之壓力變化,另外以光電感測器量測作動過程中撞針位移與時間之關係;透過性能量測平台將釘槍之最大動能檢測出來,作為釘槍性能之評價標準。同時針對氣動與瓦斯釘槍分別建立氣體動力學模型,以分析模擬其內部氣動行為與設計參數間的相對關係,提出性能參數的概念作為不同規格釘槍設計上的標準;在模擬結果與實驗數據比較上,無論是壓力、速度或動能等方面均相當吻合。最後編譯一套釘槍性能評估程式(GUI),使用者將可透過簡單的參數設定(撞針組重量、各氣室大小、燃料成分等),得到相對應之釘槍性能評估,作為未來釘槍設計時之參考依據。

    Nailers are common tool in the DIY market. There are various types of the nailers such as electric, pneumatic, combustion and gunpowder powered ones. Although the design and application are different, the operational mechanisms are similar; that is, the piston is driven to impinge nails into the working piece by different power sources. Pneumatic and combustion powered nailers have the advantages of good performance and prices over the electric ones, which make them still the main products in the industry. Nevertheless, the industry uses empirical methods to evaluate the performance of their products design and there are no national or international standards for the nailers. In this research, new parameters to evaluate the performance of the pneumatic and combustion powered nailers are introduced. First, a simple and inexpensive performance testing platform were constructed, by inserting PZT pressure transducers into different compartments of the nailers and placing the photoelectric sensors at the exit of the piston to record the pressure and piston displacement histories. The maximum kinetic energy can be calculated for each nailer accordingly. Secondly, a gasdynamics model was developed to investigate the relationship between the performance and design parameters of the nailer. Good agreements of pressures in different compartments and the velocity (or kinetic energy) of the piston between the experimental and simulation results are observed. Finally, a performance prediction program (GUI) was composed base on the theoretical simulation. It is a useful design tool for users to predict the performance of the nailer by simply inserting necessary design parameters on the screen, eg., mass of the piston, volume of each storage compartment, fuel properties…etc. The research results could provide powerful tools for the relevant industries to reduce the R&D cost and elevate their R&D capacity and to catch up with the products of the international companies ahead.

    摘要...................................I 致謝...................................IV 目錄...................................V 表目錄.................................VIII 圖目錄.................................IX 符號說明...............................XIII 第一章 緒論............................1 1. 1 前言...........................1 1. 2 文獻探討.......................5 1.2.1 氣動釘槍相關文獻...............5 1.2.2 瓦斯釘槍相關文獻...............7 1.2.3 性能分析相關...................10 1. 3 研究動機.......................14 第二章 研究方法........................15 2. 1 釘槍簡介.......................15 2. 2 實驗平台架設...................20 2. 3 實驗設備與量測方法.............23 2.3.1 實驗釘槍選擇...................23 2.3.2 壓力量測.......................24 2.3.3 速度量測.......................28 第三章 實驗結果與討論..................32 3. 1 氣動釘槍部分...................32 3. 2 瓦斯釘槍部分...................43 第四章 氣體動力學模型建立..............53 4. 1 氣動釘槍部分...................53 4.1.1 擊發過程.......................55 4.1.2 緩衝部分.......................61 4.1.3 收回過程.......................62 4. 2 瓦斯釘槍部分...................64 4.2.1 燃燒過程.......................65 4.2.2 擊發過程.......................77 4.2.3 收回過程.......................82 4. 3 實驗與理論結果比較.............84 4.3.1 氣動釘槍部分...................84 4.3.2 瓦斯釘槍部分...................94 4. 4 釘槍性能評估程式設計...........104 第五章 結論與建議......................109 參考文獻...............................112 附錄...................................117

    1. J. Wu, M. Goldfarb and E. Barth, “On the observability of pressure in a pneumatic servo actuator.” Journal of Dynamic Systems, Measurement, and Control, vol. 126, pp. 921-924, 2004
    2. Y. Zhu and E. J. Barth, “Passivity-based impact and force control of a pneumatic actuator.” Journal of Dynamic Systems Measurement and Control-Transactions of the Asme, vol. 130, 2008.
    3. J. H. Wang, J. S. Pu, and P. Moore, “Accurate position control of servo pneumatic actuator systems: an application to food packaging.” Control Engineering Practice, vol. 7, pp. 699-706, 1999.
    4. S. R. Pandian, F. Takemura, Y. Hayakawa and S. Kawamura, “Pressure observer controller design for pneumatic cylinder actuators,” Ieee-Asme Transactions on Mechatronics, vol. 7, pp. 490-499, 2002.
    5. N. Gulati and E. J. Barth, “Non-linear pressure observer design for pneumatic actuators,” in Advanced Intelligent Mechatronics Proceedings, 2005 IEEE/ASME International Conference, pp. 783-788, 2005.
    6. B. W. Anderson, The Analysis and Design of Pneumatic System, Wiley, New York, 1967.
    7. E. W. Gerc, Pneumatic Drives.Theory and Calculations, WNT, Warsaw, 1973.
    8. E. W. Gerc, Dynamics of Pneumatic Machine Systems, Masinostroenie, Moskva, 1985.
    9. T. Kiczkowiak, “Simplified mathematical model of the pneumatic high speed machine drive,” Mechanism and Machine Theory, vol. 30, pp. 101-107, 1995.
    10. Y. Y. Lin-Chen, J. Wang, Q. H. Wu, “A software tool development for pneumatic actuator system simulation and design,” Computer in Industry, vol. 51, pp. 73-88, 2003.
    11. D. L. Chapman, “On the rate of explosion in gases," Philosophical Magazine, vol. 47, pp 90 – 104, 1899.
    12. J. Jouguet, “Sur la propagation des réactions chimiques dans les gaz” [On the propagation of chemical reactions in gases], Journal des Mathématiques Pures et Appliquées, Series 6, vol. 1, pp 347-425, 1905, continued in vol. 2, pp 5-85, 1906.
    13. G. F. P. Harris, “The effect of vessel size and degree of turbulence on gas phase explosion pressures in closed vessels," Combustion and Flame, vol. 11, pp. 17-25, 1967.
    14. R. S. Benson and J. H. Burgoyne, British Shipbuilding Research Assn., Report No.76, 1951.
    15. M. J. G. Wilson, Relief of Explosion in Closed Vessels, Ph.D. Thesis, University of London , Department of Chemical Engineering, Imperial College of Science and Technology, London, UK., 1954.
    16. D. Bradley and A. Mitcheson, “The venting of gaseous explosions in spherical vessels. I--Theory, ” Combustion and Flame, vol. 32, pp. 221-236, 1978.
    17. D. Bradley and A. Mitcheson, “The venting of gaseous explosions in spherical vessels. II--Theory and experiment,” Combustion and Flame, vol. 32, pp. 237-255, 1978.
    18. A. E. Dahoe, J. F. Zevenbergen, S. M. Lemkowitz, and B. Scarlett, “Dust explosions in spherical vessels: The role of flame thickness in the validity of the `cube-root law',” Journal of Loss Prevention in the Process Industries, vol. 9, pp. 33-44, 1996.
    19. A. A. Pekalski, H. P. Schildberg, P. S. D. Smallegange, S. M. Lemkowitz, J. F. Zevenbergen, M. Braithwaite, and H. J. Pasman, “Determination of the Explosion Behaviour of Methane and Propene in Air or Oxygen at Standard and Elevated Conditions,” Process Safety and Environmental Protection, vol. 83, pp. 421-429, 2005
    20. A. A. Pekalski, E. Terli, J. F. Zevenbergen, S. M. Lemkowitz, and H. J. Pasman, “Influence of the ignition delay time on the explosion parameters of hydrocarbon-air-oxygen mixtures at elevated pressure and temperature,” Proceedings of the Combustion Institute, vol. 30, pp. 1933-1939, 2005.
    21. D. Razus, C. Movileanu, V. Brinzea, and D. Oancea, “Explosion pressures of hydrocarbon-air mixtures in closed vessels,” Journal of Hazardous Materials, vol. 135, pp. 58-65, 2006.
    22. D. Razus, C. Movileanu, V. Brinzea, and D. Oancea, “Closed vessel combustion of propylene-air mixtures in the presence of exhaust gas,” Fuel, vol. 86, pp. 1865-1872, 2007.
    23. D. Razus, C. Movileanua, and D. Oancea, “The rate of pressure rise of gaseous propylene-air explosions in spherical and cylindrical enclosures,” Journal of Hazardous Materials, vol. 139, pp. 1-8, 2007.
    24. J. B. Fenn and H. F. Calcote, “Activation energies in high temperature combustion,” Fourth Symposium (International) on Combustion, pp. 231-239, 1953.
    25. W. Bartknecht and G. Zwahlen, “Explosionsschutz: Grundlagen und Anwendung,”Springer-Verlag, Berlin, 1993.
    26. M. Fairweather and M. W. Vasey, “A mathematical model for the prediction of overpressures generated in totally confined and vented explosions,” Symposium (International) on Combustion, vol. 19, pp. 645-653, 1982.
    27. B. Lewis and G. von Elbe, Combustion Flame and Explosion of Gases, 3rd ed., Academic Press, New York, 1987.
    28. H. Kolsfy and L. S. Douch, “Experimental Studies In Plastic Wave Propagation,” J Mech Phys Solids, vol. 10, pp. 195-223, 1963
    29. M. J. Forreatal, D. J. Frew, J. P. Hickerson and T. A. Rohwer, “Penetration of concrete targets with deceleration-time measurements,” International Journal of Impact Engineering, vol. 28, pp. 479-497, 2003.
    30. X. S. Wang, Y. H. Cheng, G. Z. Peng, “Modeling and self-tuning pressure regulator design for pneumatic-pressure-load systems,” Control Engineering Practice, vol. 15, pp. 1161-1168, 2007.
    31. J.Barycki, M. Ganczarek, W. Kollek, T. Mikulczynski, and Z. Samsonowicz, “Performances of high-speed pneumatic drive with self-acting impulse valve,” Mechanism and Machine Theory, vol. 39, pp. 657-663, 2003.
    32. 王充閭,氣動釘槍動力量測系統之開發 ,國立屏東科技大學機械工程研究所碩士論文,2002.
    33. 賴信甫,氣動釘槍動力系統之分析與驗證,碩士論文,國立屏東科技大學機械工程系,2003.
    34. 蔡宗成、余家杰,電動釘槍撞針出口速度之量測,工研院委辦計畫技術報告,元智大學最佳化設計實驗室,2004.
    35. 蔡宗成、余家杰,電動釘槍測試機台設計與測試,工研院委辦計畫技術報告,元智大學最佳化設計實驗室,2004.
    36. H. F. Coward and G. W. Jones, “Limits of Flammability of Gases and Vapors,” U. S. Bureau Of Mines Bull., pp. 503, 1952.
    37. P. A. Thompson, Compressible fluid dynamics, Advanced Engineering Series, McGraw-Hill, New York, 1988.
    38. B. G. Kyle, Chemical and Process Thermodynamics, 3rd ed., Prentice-Hall, 1999.

    下載圖示 校內:立即公開
    校外:2009-08-13公開
    QR CODE