簡易檢索 / 詳目顯示

研究生: 宋雲傑
Sung, Yun-Chieh
論文名稱: 矽與氧化矽蝕刻技術之研究
A study on the etching technology of silicon and silicon oxide
指導教授: 鍾震桂
Chung, Chen-Kuei
學位類別: 碩士
Master
系所名稱: 工學院 - 微機電系統工程研究所
Institute of Micro-Electro-Mechancial-System Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 98
中文關鍵詞: 雷射加工電漿蝕刻CO2雷射光刻
外文關鍵詞: laser machining, CO2 laser etching, plasma etching
相關次數: 點閱:106下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在研究矽與氧化矽的蝕刻技術,由於蝕刻幾何圖案尺寸的不同所使用的加工方式也有所不同,本文在次微米小線寬圖案的蝕刻上將使用半導體電漿蝕刻達成,而大線寬圖案之蝕刻則使用CO2雷射光刻法達成。在半導體電漿蝕刻方面,以高密度的變壓耦合電漿多晶矽蝕刻機(Transformer coupled plasma, TCP)為主要蝕刻系統,結合薄膜沉積與黃光微影之圖案定義,在矽與氧化矽薄膜上蝕刻次微米高深寬比的柵狀結構,文中將介紹半導體電漿蝕刻的原理與機制,並探討蝕刻幾何尺寸與製程參數對蝕刻結果之影響,進一步改善蝕刻過程中所造成的缺陷。而CO2雷射光刻部份,因受限於雷射光斑大小限制,故尺寸皆以數百微米之線寬為主,對於矽與氧化矽之雷射光刻,隨著材料的不同加工方法也有所差異,在雷射光刻矽基材之蝕刻研究上將利用〝CO2雷射對矽晶圓之特殊加工技術〞,對矽晶圓進行不規則形狀之切割與鑽孔,並探討雷射參數對鑽孔直徑變化趨勢的影響;在雷射光刻氧化矽部分,本實驗將利用〝水輔助雷射光刻技術〞對氧化矽含量為主之Pyrex 7740玻璃進行切割與鑽孔,並改善一般雷射加工脆性材料所產生之缺陷。

    In this thesis, we study the etching technology of silicon and silicon oxide. The processing method is related to difference of the feature size of geometry pattern. The etching of sub-micron patterns was performed by semiconductor plasma etching while the large patterns were processed by CO2 laser etching. In semiconductor plasma etching, TCP etching system combining the thin film deposition and lithography was used to etch high aspect ratio sub-micro grating structure on silicon films. The influence of process parameter and geometry size on etching results was discussed by the principle and mechanism of semiconductor plasma etching and selected to improve the defects of plasma etching. In CO2 laser etching, due to the large laser spot size, the feature size of lines was in the range of several hundred microns wide. In the laser etching silicon substrate, a particular machining technology by CO2 laser was used for silicon wafer cutting, drilling and irregular shape etching. The effect of laser parameters on the diameter of hole was discussed. In the laser etching silicon oxide, water assisted laser etching technology was used for machining Pyrex 7740 glass oxide. Glass cutting and drilling with the elimination or reduction of defects was demonstrated.

    摘要.........................................I Abstract.....................................II 致謝.........................................III 目錄.........................................IV 表目錄.......................................VIII 圖目錄.......................................IX 第一章 緒論.................................1 1.1 前言.....................................1 1.2 半導體電漿蝕刻技術.......................3 1.2.1 簡介...................................3 1.2.2電漿蝕刻原理與機制......................5 1.3 雷射光刻技術.............................11 1.3.1 簡介...................................11 1.3.2 雷射光刻原理與機制....................14 1.4 文獻回顧.................................17 1.4.1 半導體電漿蝕刻技術.....................17 1.4.2 雷射光刻技術...........................21 1.5 研究動機.................................26 第二章 實驗方法與步驟.......................28 2.1 矽與氧化矽蝕刻系統介紹...................28 2.1.1半導體電漿蝕刻系統......................28 2.1.2雷射光刻系統............................30 2.2 觀察與量測設備介紹.......................31 2.2.1 熱場發射掃描式電子顯微鏡...............31 2.2.2 光學顯微鏡.............................33 2.2.3 表面粗度儀.............................34 2.3 半導體電漿蝕刻製程.......................35 2.3.1 材料選用與影響參數.....................35 2.3.2 製程設計...............................36 2.4 矽晶圓雷射光刻製程.......................39 2.4.1材料選用與影響參數......................39 2.4.2 製程設計...............................39 2.5氧化矽雷射光刻製程........................41 2.5.1材料選用與影響參數......................41 2.5.2 製程設計...............................42 第三章 半導體電漿蝕刻結果與討論..............45 3.1幾何尺寸的影響............................45 3.2參數的影響................................48 3.2.1 降低製程壓力...........................49 3.2.2 改變氣體流率比.........................52 3.2.3 加入O2.................................55 3.2.4 參數調變整合製程.......................59 第四章 雷射光刻結果與討論....................62 4.1 CO2雷射矽晶圓加工技術....................62 4.1.1 CO2雷射直線切割四吋矽晶圓..............63 4.1.2 CO2雷射不規則形狀切割..................64 4.1.3 CO2雷射矽晶圓鑽孔......................65 4.1.4 CO2雷射矽晶圓鑽孔直徑趨勢比較..........66 4.2 CO2雷射氧化矽玻璃加工技術................71 4.2.1 CO2雷射於水中與空氣中光刻氧化矽玻璃....73 4.2.2空氣中與水中雷射光刻凸塊比較............76 4.2.3 CO2雷射氧化矽玻璃鑽孔..................78 4.2.4 水輔助雷射加工氧化矽玻璃的趨勢比較.....82 第五章 結論..................................84 5.1半導體電漿蝕刻技術........................84 5.2 CO2雷射矽晶圓加工技術....................85 5.3 CO2雷射氧化矽玻璃加工技術................86 參考文獻.....................................88 簡歷.........................................98

    [1] W. A. Kern and C. A. Deckert, in Thin Film Processing, J. L. Vossen, ed., New York: Academic(1978).
    [2] 丁志明, 方維倫等九十八人, 微機電系統技術與應用, 行政院國家科學委員會精密儀器發展中心出版第53頁, 民國92年.
    [3] http://www.itrc.org.tw/Manufacture/co2_laser.php
    [4] Metev SM, Veiko VP. Laser-assisted microtechnology. Berlin, Germany: Springer; 1994.
    [5] Bado P, Clark W, Said A. Introduction to micromachining handbook. Ann Arbor, MI: Clark MXR, 2001.
    [6] Ampere A. Tsenga, Ying-Tung Chen, Kung-Jeng Ma, Fabrication of high-aspect-ratio microstructures using excimer laser, Optics and Lasers in Engineering 41 (2004) 827–847.
    [7] Arnold Gillner, Jens Holtkamp, Claudia Hartmann, Alexander Olowinsky, Jens Holtkamp, Claudia Hartmann, Alexander Olowinsky, Laser applications in microtechnology, Journal of Materials Processing Technology 167 (2005) 494–498.
    [8] H. S. Mavi, B. G. Rasheed, A. K. Shukla, S. C. Abbi, K. P. Jain, Photoluminescence study of Nd:YAG laser-etched silicon, Journal of Non-Crystalline Solids Volume: 286, Issue: 3, July, 2001, pp. 162-168.
    [9] C. García, J. Ramos,A.C. Prieto, J. Jiménez, C. Geertsen, J. L. Lacour, P. Mauchien, Micro-Raman study of UV laser ablation of GaAs and Si substrates, Applied Surface Science Vol.96-98, pp. 370-375 (1996).
    [10] Hyoung-Shik Kang, Soon-Kug Hong, Scok-Chang OH, Jong-Yoon Choi, Min-Gyu Song, A Study of Cutting Glass by Laser, Proc. Spie Vol.4426, pp154-157, (2002).
    [11] Yoshikazu YOSHTDA, Hiroyoshi YAJIMA, Yuji HASHIDATE, Hiroshi OGURA, ShuheiUEDA, Hole Drilling of Glass-Foam Substrates with Laser, Proc. Spie Vol.4426, pp367-370, (2002).
    [12] http://elearning.stut.edu.tw/m_facture/Nanotech/Web/ch1.htm
    [13] http://pilot.mse.nthu.edu.tw/micro/chap5/5-3.htm
    [14] James D. Plummer, Michael D. Deal, Perer B.Griffin, “SILICON VLSI TECHNOLOGY ”, Chapter 10 etching, Prentice Hall, pp.648, 2000.
    [15] http://www.mirl.itri.org.tw/mirl-inter/knowledge/mim/270/270-02.pdf
    [16] http://pilot.mse.nthu.edu.tw/micro/chap5/5-3.ht2.gif
    [17] http://www.ndl.org.tw/cht/ndlcomm/P9_3/33.pdf
    [18] http://www.phy.ncu.edu.tw/notes/down/laser/extra.htm
    [19] http://www.mirl.itri.org.tw/mirl-inter/knowledge/mim/274/274-08.pdf
    [20] 丁志明, 方維倫等九十八人, 微機電系統技術與應用, 行政院國家科學委員會精密儀器發展中心出版, 第187-190頁, 民國92年.
    [21] I. W. Rangelow and P. Hudek, MEMS Fabrication by Lithography and Reactive Ion Etching(LIRIE), Microel. Eng. 27(1995) 471-474.
    [22] R. D. Mansano, P. Verdonck, H. S. Maciel, M. Massi,Anisotropic inductively coupled plasma etching of silicon with pure SF6, Thin solid films 343-344 (1999) 378-380.
    [23] S. Tachi, K. Tsujimoto, S. Okudaira, Appl. Phys. Lett. 52 (1988) 616.
    [24] S. Tachi, K. Tsujimoto, S. Arai, T. Kure, J. Vac. Sci. Technol. A 9 (1991) 796-803.
    [25] Henri Jansen, Meint de Boer, Henk Wensink, Ben Kloeck, Miko Elwenspoek, The black silicon method. VIII. A study of the performance of etching silicon using SF6/O2-based chemistry with cryogenical wafer cooling and a high density ICP source, Microelectronics Journal 32 (2001) 769-777.
    [26] W. J. Park, J. H. Kim, S. M. Cho, S. G. Yoon, S. J. Suh, D. H. Yoon, High aspect ratio via etching conditions for deep trench of silicon, Surface and Coatings Technology 171 (2003) 290-295.
    [27] C. C. Hung, H. C. Lin, H. C. Shih, Response surface methodology applied to silicon trench etching in Cl2/HBr/O2 using transformer coupled plasma technique, Solid-State Electronics 46 (2002) 791-795.
    [28] Byungwhan Kim, Sungmo Kim, Soo-Chnag Ann, Byung-Teak Lee Proximity-controlled silicon carbide etching in inductively coupled plasma, Thin Solid Films 434 (2003) 276-282.
    [29] Hyun-Mog Park, Dennis S. Grimard, Jessy W. Grizzle, Etch Profile Control of High-Aspect Ratio Deep Submicrometer α-Si Gate Etch, IEEE Trans. Semiconduct. Manufact., vol. 14 pp.242-254(2001).
    [30] C. K. Chung, Geometrical pattern effect on silicon deep etching by an inductively coupled plasma system, J. Micromech. Microeng. 14 (2004) 656-662.
    [31] Xinghua Li, Takashi Abeb, Masayoshi Esashi, Deep reactive ion etching of Pyrex glass using SF6 plasma, Sensors and Actuators A 87 (2001) 139-145.
    [32] EzzEldin Metwalli, Carlo G. Pantano, Reactive ion etching of glasses: Composition dependence, Nuclear Instruments and Methods in Physics Research B 207 (2003) 21-27.
    [33] Beom-hoan OU, Se-Geun Park, Sang-Ho Rha, Jae-Seong Jeong, Surface and Coatings Technology 133-134 (2000) 589-592.
    [34] I. W. Rangelow, St. Biehl, High aspect ratio silicon tips field emitter array, Microelectronic Engineering 57-58 (2001) 613-619.
    [35] St. Trellenkamp, J. Moers, A. van der Hart, P. Kordos, H. Luth, Patterning of 25-nm-wide silicon webs with an aspect ratio of 13, Microelectronic Engineering 67-68 (2003) 376-380.
    [36] H. W. Choi, C. W. Jeon, M. D. Dawson, Fabrication of matrix-addressable micro-LED arrays based on a novel etch technique, Journal of Crystal Growth 268 (2004) 527-530.
    [37] Chienliu Chang, Y.F. Wang, Yoshiaki Kanamori, J. J. Shih, Yusuke Kawai, C. K. Lee, K. C. Wu and Masayoshi Esashi, Etching, submicrometer trenches by using the Bosch process and its pplication to the fabrication of antireflection structures, J. Micromech. Microeng. 15 (2005) 580-585.
    [38] Marko Lončar, Theodor Doll, Jelena Vučković, Axel Scherer Design and Fabrication of Silicon Photonic Crystal Optical Waveguides, J. Lightwave Technol., vol. 18, pp. 1402-1411, 2000.
    [39] Henri Benisty, Maxime Rattier, Ségolène Olivier, Two-dimensional photonic crystals:new feasible confined optical systems, C. R. Physique 3 (2002) 89-102.
    [40] K. Avary, J. P. Reithmaier, F. Klopf, T. Happ, M. Kamp, A. Forchel, Deeply etched two-dimensional photonic crystals fabricated on GaAs/AlGaAs slab waveguides by using chemically assistedion beam etching, Microelectronic Engineering 61-62 (2002) 875-880.
    [41] S. Kawakami, Fabrication of submicrometre 3D periodic structures composed of Si/SiO2, Electron. Lett., Vol. 33, pp. 1260-1261, 1997.
    [42] Susumu Noda, Katsuhiro Tomoda, Noritsugu Yamamoto, Alongkarn Chutinan1, Full Three-Dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths, Science 289 (2000) 604-606.
    [43] Minghao Qi, Elefterios Lidorikis, Peter T. Rakich, Steven G. Johnson, J. D. Joannopoulos, Erich P. Ippen & Henry I. Smith , A three-dimensional optical photonic crystal with designed point defects, Nature 429, 538-542 (2004).
    [44] Ying Xu et.al., Fabrication and direct transmission measurement of high-aspect-ratio two-dimensional silicon-based photonic crystal chips, J. Opt. Soc. Am. 18, 1084 (2001).
    [45] Kyoji Inoshita and Toshihiko Baba, Fabrication of GaInAsP/InP Photonic Crystal Lasers by ICP Etching and Control of Resonant Mode in Point and Line Composite Defects, IEEE J. Select. Topics Quantum Electron., vol. 9, pp.1347-1354, September/October (2003).
    [46] C. H. Tsai and C. S. Liou, Applying an On-line Crack Detection Technique For Laser Cutting by Controlled Fracture, Int J Adv Manuf Technol (2001) 18:724-730.
    [47] S. Zhu, Y. F. Lu, M. H. Hong, and X. Y. Chen, Laser ablation of solid substrates in water and ambient air, J. Appl. Phys. 89, 2400 (2001).
    [48] K. L. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L. M. Raff, R. Komanduri, Micromachining of silicon by short-pulse laser ablation in air and under water, Materials Science and Engineering A 372 (2004) 145-162.
    [49] C. F. Li, D. B. Johnson, R. Kovacevic, Modeling of waterjet guided laser grooving of silicon, International Journal of Machine Tools & Manufacture 43 (2003) 925-936.
    [50] T-C Chen, Robert B. Darling, Parametric studies on pulsed near ultraviolet frequency tripled Nd:YAG laser micromachining of sapphire and silicon, Journal of Materials Processing Technology 169 (2005) 214–218.
    [51] J. Zhang, K. Sugioka, K. Midorikawa, High-speed machining of glass materials by laser-induced plasma-assisted ablation using a 532-nm laser, Appl. Phys. A 67, 499-501 (1998).
    [52] Jian Zhao, James Sullivan, Ted D. Bennett, Wet etching study of silica glass after CW CO2 laser treatment, Applied Surface Science 225 (2004) 250-255.
    [53] K. Zimmer, A. Braun, R. BÖhme, Etching of fused silica and glass with excimer laser at 351nm, Applied Surface Science 208-209 (2003) 199-204.
    [54] S. Nikumb, Q. Chen, C. Li, H. Reshef, H.Y. Zheng, H. Qiu, D. Low, Precision glass machining, drilling and profile cutting by short pulse lasers, Thin Solid Films 477 (2005) 216-221.
    [55] E. S. Prakash, K. Sadashivappa, Vince Joseph, M. Singaperumal, Nonconventional cutting of plate glass using hot air jet: experimental studies, Mechatronics, Vol. 11, Issue 6, pp. 595-615(2001).
    [56] Bai Hua Zhou, S.M. Mahdavian, Experimental and theoretical analyses of cutting nonmetallic materials by low power CO2-laser, Journal of Materials Processing Technology 146 (2004) 188-192.
    [57] C. baasandash, T. yabe, J. maehara, M. yamaguchi, H.wakatsuki, Crack-free processing of glasses by 1 μm-YAG laser and translucent adhesive tape and its numerical analyses by CIP, Appl. Phys. A 79, 1509-1511 (2004).
    [58] Z. L. Li, T. T. lin, P. M. moran, Thick polymer cover layers for laser micromachining of fine holes, Appl. Phys. A 81, 753-758 (2005).
    [59] L. Berthe, R. Fabbro, P. Peyre, L. Tollier, and E. Bartnicki, Shock waves from a water-confined laser-generated plasma, J. Appl. Phys. 82 (6), pp. 2826-2832 (1997).
    [60] Arvi Kruusing, Underwater and water-assisted laser processing: Part 1-general features, steam cleaning and shock processing, Optics and Lasers in Engineering 41 (2004) 307-327.
    [61] Arvi Kruusing, Underwater and water-assisted laser processing: Part 2-Etching, cutting and rarely used methods, Optics and Lasers in Engineering 41 (2004) 329-352.
    [62] J. B. He´roux, S. Boughaba, I. Ressejac, E. Sacher, and M. Meunier, CO2 laser-assisted removal of submicron particles from solid surfaces, J. Appl. Phys. 79 (6), 15 March 1996.
    [63] G. Vereecke, E. Rohr, M.M. Heyns, Influence of beam incidence angle on dry laser cleaning of surface particles, Applied Surface Science 157 67-73(2000).
    [64] http://www.ndl.org.tw/cht/doc/3-1-1-0/E1_A.doc
    [65] B. H. Zhou and S. M. Mahdavian, “Experimental and theoretical analyses of cutting nonmetallic materials by low power CO2-laser.” Journal of Materials Processing Technology, 146(2004), pp.188-192.
    [66] http://www.ndl.org.tw/cht/doc/3-1-1-3/009C_A.doc
    [67] C. H. Low, W. S. Chin, K. L. Tan, F. C. Loh, M. Zhou, Q. H. Zhong and L. H. Chan, Characterization of Si(100) Surface after High Density HBr/Cl2/O2 Plasma Etching, Jpn. J. Appl. Phys., vol.39 (2000), pp.14-19.

    下載圖示 校內:2008-08-02公開
    校外:2008-08-02公開
    QR CODE