簡易檢索 / 詳目顯示

研究生: 劉逸軒
Liu, Yi-Hsuan
論文名稱: 以計算流體力學方法分析不同俯仰對船舶操縱性之影響
Analysis on the Ship Maneuvering Characteristics with Different Trim by CFD Method
指導教授: 方銘川
Fang, Ming-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 140
中文關鍵詞: 船舶操縱性流體動力係數計算流體力學俯仰
外文關鍵詞: Maneuvering, Hydrodynamic Coefficients, CFD, Trim
相關次數: 點閱:107下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文目的主要是利用計算流體力學方法來探討不同俯仰情況下船體流體動力之變化以提供船舶在不同航行姿態下對船舶操縱性能的影響資訊。
      本文先是根據不同船舶操縱性實驗方式,包含斜航試驗、迴旋運動試驗、穩態橫移移動與穩態平擺轉動等方法,來模擬油輪KVLCC2求得其流體動力係數與前人研究文獻實驗結果比較驗證。同時,對貨櫃輪及油輪兩艘船模進行相同的操縱性實驗模擬,並與平面運動機構(PMM)實驗結果做比較,來驗證CFD方法於流體動力係數分析之可行性。接著對貨櫃輪及油輪兩艘不同的船型進行不同俯仰角度的操縱性實驗模擬,對其流體動力係數變化進行比較及討論。比較內容包含縱移、橫移與平擺三個方向的各項流體動力係數及附加質量。並將所求得流體動力係數與附加質量代入MMG船體運動模型進行模擬比較不同俯仰狀況的操縱性優劣狀況。
      在斜航試驗搭配迴旋運動試驗的模擬結果與穩態橫移移動搭配穩態平擺轉動模擬結果比較上顯示是否有x方向入流對流體動力係數有明顯的影響。同時,將模擬結果與船模實驗數據比較後,可發現以CFD方法進行斜航試驗與迴旋運動試驗模擬預估線性項的流體動力係數是可行且有效率的,但非線性項部分還有修正的空間。
      在不同俯仰狀況對流體動力係數的影響部分,多數流體動力係數皆可觀察出與俯仰角度相關的趨勢。在MMG運動模型的模擬中,貨櫃輪在艏俯時迴旋運動性能最佳,平浮次之,艉俯最差。而油輪在艉俯時迴旋運動性能較平浮優異,但艏俯與平浮比較時有好有壞,無法判斷兩者優劣。在Z型運動試驗上,貨櫃輪與油輪結果相同,皆是艉俯時性能最佳,平浮次之,而艏俯最差。

      The goal of the present article is to analyze the influence of different trim on hydrodynamic coefficients by CFD method and provide complete information of ship maneuvering in different navigation status.
      First, we simulate different maneuvering tests for three models, i.e. KVLCC2, container and tanker, and compare the relating hydrodynamic coefficients with the data based on the former existing test and new experiments in NCKU to verify the reliability of CFD method applied here. The influence on hydrodynamic coefficients of the container and the tanker with respect to different trim cases is also analyzed. Finally, we use MMG model to simulate ship motions and analyze the influence on maneuvering characteristics.
      From the present study, we find that the longitudinal velocity component has significant influence on hydrodynamic coefficients. Besides, the results show that using CFD method to predict linear coefficients is available, but there is still some room for improving the nonlinear term solutions.
      Most of hydrodynamic coefficients show correlation with trim angle in simulations with respect to different trims. The motion simulations show that the container has best turning ability with trim by bow, even keel is the second, and trim by stern is the worst. However, the best course checking ability appears with trim by stern, even keel is the second, and trim by bow is the worst. The tanker’s turning ability with trim by stern is the best, however, it’s hard to determine which case is better with trim by bow or even keel. It has best course checking ability with trim by stern, even keel is the second, and trim by bow is the worst , which is similar to the container.

    摘要 I Abstract II 誌謝 III Table of Contents IV List of Tables VII List of Figures X Nomenclature XVIII Chapter 1 Introduction 1 1.1 Background Information 1 1.2 Literature Review 2 1.3 Outline 6 Chapter 2 Numerical Method 7 2.1 Governing Equation 7 2.2 Turbulence Model 9 2.3 Grid Generation 11 2.4 Numerical Discretization Method 12 2.5 Solver and Convergence 13 Chapter 3 Maneuvering Equation and Hydrodynamic Coefficients 14 3.1 Mathematical model of ship maneuvering 14 3.2 Basic assumptions and coordinate systems 15 3.3 Motion Equations 16 3.4 Hydrodynamic Coefficients 17 Chapter 4 Simulation Method of Captive Model Test 21 4.1 Captive Model Test 21 4.1.1 Oblique Towing Test (OTT) 22 4.1.2 Circular Motion Test (CMT) 23 4.1.3 Steady Sway Translation (S.S.T.) 25 4.1.4 Steady Yaw Rotation (S.Y.R.) 26 4.2 Mesh and Boundary Settings 28 4.2.1 Computing Domain Settings 28 4.2.2 Mesh Setting 29 4.2.3 Boundary Setting 32 Chapter 5 Result and Discussion 35 5.1 Ship Models 35 5.2 Simulation of Different Maneuvering Tests for KVLCC2 38 5.2.1 Result of Resistance Test for KVLCC2 39 5.2.2 Result of OTT for KVLCC2 40 5.2.3 Result of CMT for KVLCC2 41 5.2.4 Result of S.S.T. for KVLCC2 42 5.2.5 Result of S.Y.R. for KVLCC2 43 5.2.6 Total Result of Simulations for KVLCC2 44 5.3 Simulation of Different Maneuvering Tests for Container and Tanker 48 5.3.1 Result of Resistance Test for Container and Tanker 49 5.3.2 Result of OTT for Container and Tanker 50 5.3.3 Result of CMT for Container and Tanker 52 5.3.4 Result of S.S.T. for Container and Tanker 53 5.3.5 Result of S.Y.R. for Container and Tanker 55 5.3.6 Total Result of Simulations for Container and Tanker 57 5.4 Simulation of Different Trim Condition for Container and Tanker 60 5.5 Result of Different Trim Condition for Container 62 5.5.1 Result of Resistance Test for Container 62 5.5.2 Result of OTT for Container 64 5.5.3 Result of CMT for Container 66 5.5.4 Result of Surge Acceleration Test for Container 69 5.5.5 Result of Sway Acceleration Test for Container 73 5.5.6 Result of Yaw Acceleration Test for Container 79 5.5.7 Total Result of Simulations for Container 86 5.6 Result of Different Trim Condition for Tanker 97 5.6.1 Result of Resistance Test for Container 97 5.6.2 Result of OTT for Tanker 99 5.6.3 Result of CMT for Tanker 101 5.6.4 Result of Surge Acceleration Test for Tanker 104 5.6.5 Result of Sway Acceleration Test for Tanker 108 5.6.6 Result of Yaw Acceleration Test for Tanker 114 5.6.7 Total Result of Simulations for Tanker 120 Chapter 6 Conclusion 130 Reference 134 Appendix 137

    A. Tyagi, D. Sen, “Calculation of transverse hydrodynamic coefficients using computational fluid dynamic approach”, Ocean Engineering, Vol. 33, Iss. 5-6, pp. 798-809, Apr. 2006.
    A.M. Okamura, N. Smaby and M.R. Cutkosky, “An overview of dexterous manipulation,” Proc. of the IEEE Int. Conf. on Robotics and Automation, Vol. 1, San Francisco, CA, USA, pp. 255-262, Apr. 2000.
    A. Ebrahimi, “Numerical study on resistance of a bulk carrier vessel using CFD method”, Journal of the Persian Gulf (Marine Science), Vol. 3, No. 10, pp. 1-6, Dec. 2012.
    C.G. KÄLLSTRÖM, K.J. ÅSTRÖM, “Experiences of system identification applied to ship steering”, Automatica, Vol. 17, Iss. 1, pp. 187-198, Jan. 1981.
    F.R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications”, AIAA Journal, Vol. 32, No. 8, pp.1598-1605, Aug. 1994.
    F. Stern, K. Agdrup, S.Y. Kim, A.C. Hochbaum, K.P. Rhee, F. Quadvlieg, P. Perdon, T. Hino, R. Broglia and J. Gorski, “Experience from SIMMAN 2008-the first workshop on verification and validation of ship maneuvering simulation methods”, Journal of ship research, Vol. 55, No. 2, pp. 135-147, Jun. 2011.
    G. Rajesh, S.K. Bhattacharyya, “System identification for nonlinear maneuvering of large tankers using artificial neural network”, Applied Ocean Research, Vol. 30, Iss. 4, pp. 256-263, Oct. 2008.
    H.K. Yoon, K.P. Rhee, “Identification of hydrodynamic coefficients in ship maneuvering equations of motion by Estimation-Before-Modeling technique”, Ocean Engineering, Vol. 30, Iss. 18, pp.2379-2404, Dec. 2003.
    H. Zhang, Y.R. Xu and H.P. Cai, “Using CFD software to calculate hydrodynamic coefficients”, Journal of Marine Science and Application, Vol. 9, Issue 2, pp. 149-155, Jun. 2010.
    H. Yasukawa, Y. Yoshimura, “Introduction of MMG standard method for ship maneuvering predictions”, Journal of Marine Science and Technology, Vol. 20, Issue 1, pp. 37-52, Mar. 2015.
    K. Samarpana, A. konapala and D. Ramesh, “Computational investigation of free surface flow around a ship hull”, International Journal of Application or Innovation in Engineering & Management, Vol. 2, Iss. 5, pp. 98-107, May 2013.
    L. Zou, L. Larsson, M. Orych, “Verification and validation of CFD predictions for a manoeuvring tanker”, Journal of Hydrodynamics, Ser. B, Vol. 22, Iss. 5, pp. 438-445, Oct. 2010
    L. Zou, “CFD predictions including verification and validation of hydrodynamic forces and moments on ships in restricted waters”, Thesis for degree of doctor of philosophy, Department of Shipping and Marine Technology Chalmers University of Technology, 2012
    S. Inoue, K. Kijima, F. Moriyama, “Presumption of Hydrodynamic Derivatives on Ship Manoeuvring in Trimmed Condition”, The Japan Society of Naval Architects and Ocean Engineering, Vol. 55, pp. 127-139, Mar. 1978
    S. Inoue, M. Hirano, Y. Hirakawa, K. Mukai, “The Hydrodynamic Derivatives on Ship Maneuverability with even keel Condition”, The Japan Society of Naval Architects and Ocean Engineering, Vol. 57, pp. 13-19, Mar. 1979
    S. Inoue, M. Hirano, K. Mukai, “The Non-linear Terms of Lateral Force and Moment Acting on Ship Hull in the Case of Maneuvering”, The Japan Society of Naval Architects and Ocean Engineering, Vol. 58, pp. 153-160, Aug. 1979
    S. Tang, T. Ura, T. Nakatami, B. Thornton and T. Jiamg, “Estimation of the hydrodynamic coefficients of the complex-shaped autonomous underwater vehicle TUNA-SAND”, Journal of Marine Science and Technology, Vol. 14, Issue 3, pp. 373-386, Sep. 2009.
    S. Aktar, Dr. G.K. Saha and Dr. Md. A. Alim, “Numerical computation of wave resistance around wigley hull using computational fluid dynamics tools”, Advance Shipping and Ocean Engineering, Vol. 2, Iss. 3, pp.84-95, Sep. 2013.
    T. Tabaczek, T. Gornicz & J. Kulczyk, “CFD Based Hull Hydrodynamic Forces for Simulation of Ship Manoeuvres”, International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 3, No. 1, pp.31-35, Mar. 2009
    江宜澤,「應用計算流體力學方法探討船舶流體動力係數及操縱性能之研究」,國立台灣大學工學院工程科學及海洋工程學研究所碩士論文,2015
    呂振維,「以計算流體動力學分析水下載具流體動力係數之研究」,國立成功大學系統及船舶機電工程學系碩士論文,2012

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE