| 研究生: |
沈廷儒 Shen, Ting-Ju |
|---|---|
| 論文名稱: |
超機動飛行器容錯控制系統設計 Fault Tolerance Flight Controller for Supermanueverable Aircraft |
| 指導教授: |
陳介力
Chen, Chieh-Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 容錯控制 、飛行器 、增量式非線性動態反算 |
| 外文關鍵詞: | Supermaneuverble Aircraft, Non-linear Dynamics Inversion, Fault-Tolerance Control |
| 相關次數: | 點閱:150 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
放寬靜不穩定和線傳飛控為近代飛行器最基本之要素,可以提高飛行器效率,減輕飛行員操作負擔,在大攻角以及極端狀況仍可以避免飛行器處於失控之狀態,而在飛控電腦端,可以利用非控系統,避免飛行員下達超出飛行包絡線之指令,確保飛行器皆處在飛行包絡線內。
在本文中,利用非線性反算進行飛行器角速度,姿態,飛行軌跡之控制,並且引入增量式非線性反算,除了控制面相關之參數以外,飛行器狀態所產生之影響可以忽略,並且藉由簡單致動器系統模擬飛行器控制面之響應,本文將以X-31向量推力試驗機進行控制,模擬其空氣動力學和動力學模型,其中飛行器姿態將由四元數所表示防止以歐拉角(Eular Angle)表示三維物體旋轉時會出現的環架鎖定(Gimbal Lock)。
除了飛行器控制,本文也將模擬飛行器在控制面失效時,藉由控制器之改變,使飛行器仍可在可控範圍內,並且藉由 MATLAB SIMULINK模擬其響應和控制策略,緩解飛行器出現控制面失效之衝擊
In this thesis, we will control the X-31 (Rockwell – MBB X-31) experimental aircraft by applying the NDI (Nonlinear Dynamic Inversion) into flight control which can control the angular velocity, attitude, flight path of the aircraft. Furthermore, we can ignore the influence of aircraft state by changing the NDI into INDI (incremental Nonlinear Dynamic Inversion). The aerodynamic and dynamic model will be discussed and simulated by MATLAB SIMULINK in the thesis. In addition, the aircraft’s attitude will be presented by quaternion to avoid the Gimbal Lock which is presented by Eulae Angle.
Apart from controlling the aircraft, the control surface failure will be discussed in the thesis. Control strategy will be reconstructed to eliminate the influence of the impact of control surface failure.
Ashley, H. (1987). On the feasibility of low-speed aircraft maneuvers involving extreme angles of attack. Journal of Fluids and Structures, 1(3), 319-335. doi:https://doi.org/10.1016/0889-9746(87)90257-X
Canter, D., & Groves, A. (1994). X-31 post-stall envelope expansion and tactical utility testing. Paper presented at the Biennial Flight Test Conference.
Huber, P., & Seamount, P. (1994). X-31 high angle of attack control system performance.
Kang, H.-Y. (2016). 超機動飛行器的四元組非線性動態反算自主飛行控制系統設計與實作. Retrieved from http://ir.lib.ncku.edu.tw/handle/987654321/169245
Lallman, F. J. (1985). Preliminary design study of a lateral-directional control system using thrust vectoring.
Lambert, M. (1993). Jane's All the World's Aircraft, 1993-94: Jane's Information Group.
Lu, P., van Kampen, E.-J., de Visser, C., & Chu, Q. (2016). Aircraft fault-tolerant trajectory control using Incremental Nonlinear Dynamic Inversion. Control Engineering Practice, 57, 126-141. doi:https://doi.org/10.1016/j.conengprac.2016.09.010
McCullough, K. (2011). Design and characterization of a dual electro-hydrostatic actuator. Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, MA Sc. Thesis.
Navarro, R. (1997). Performance of an electro-hydrostatic actuator on the F-18 systems research aircraft.
Sieberling, S., Chu, Q., & Mulder, J. (2010). Robust flight control using incremental nonlinear dynamic inversion and angular acceleration prediction. Journal of guidance, control, and dynamics, 33(6), 1732-1742.
Simplício, P., Pavel, M., Van Kampen, E., & Chu, Q. (2013). An acceleration measurements-based approach for helicopter nonlinear flight control using Incremental Nonlinear Dynamic Inversion. Control Engineering Practice, 21(8), 1065-1077.
Singh, S. N., Steinberg, M. L., & Page, A. (2003). Nonlinear adaptive and sliding mode flight path control of F/A-18 model. IEEE Transactions on Aerospace and Electronic Systems, 39(4), 1250-1262.
Slotine, J.-J. E., & Li, W. (1991). Applied nonlinear control (Vol. 199): Prentice hall Englewood Cliffs, NJ.
Snell, S. A., Nns, D. F., & Arrard, W. L. (1992). Nonlinear inversion flight control for a supermaneuverable aircraft. Journal of guidance, control, and dynamics, 15(4), 976-984.
Ye, D., & Yang, G.-H. (2006). Adaptive fault-tolerant tracking control against actuator faults with application to flight control. IEEE Transactions on Control Systems Technology, 14(6), 1088-1096.